-
公开(公告)号:CN117011673A
公开(公告)日:2023-11-07
申请号:CN202311284723.4
申请日:2023-10-07
Applicant: 之江实验室
IPC: G06V10/84 , G06V10/30 , G06V10/764 , G06V10/82
Abstract: 本发明公开了一种基于噪声扩散学习的电阻抗层析成像图像重建方法和装置,适用于工业过程成像、地质勘探和医学成像等技术领域。本发明通过获取含有电阻抗层析成像边界测量复电压序列信息的初始反投影图像对,再将初始反投影图像对输入至预先训练好的基于噪声扩散学习的电阻抗层析成像图像重建网络模型,可快速获取低噪、超高分辨率的电阻抗层析重建图像。其中基于噪声扩散学习的EIT图像重建网络模型训练的核心思想为先向电阻抗图像逐步添加概率分布已知的噪声,直至将其转换为正态分布的噪声图像,再在约束条件引导下,利用深度神经网络预测每一个时间节点处上一步添加的噪声来对噪声图像进行逐步去噪和更新估计,直至将其恢复为高精度重构图像。
-
公开(公告)号:CN116152246B
公开(公告)日:2023-07-25
申请号:CN202310422220.2
申请日:2023-04-19
Applicant: 之江实验室
Abstract: 本说明书公开了一种图像识别方法、装置、设备及存储介质,可以基于待识别CT图像中包含的每个体素对应的CT值,提取出待识别CT图像的统计数据,进而可以通过识别模型根据待识别CT图像的统计数据,确定出待识别CT图像的第一特征表示,以及根据待识别CT图像,确定出待识别CT图像的第二特征表示,进而可以根据待识别CT图像的统计数据以及待识别CT图像的图像信息,对待识别CT图像进行识别,进而可以提高识别的准确性。
-
公开(公告)号:CN115082743B
公开(公告)日:2022-12-06
申请号:CN202210980903.5
申请日:2022-08-16
Applicant: 之江实验室
Abstract: 本发明公开了一种考虑肿瘤微环境的全视野数字病理图像分类系统及构建方法,该方法首先进行全视野数字病理图像的特征提取,随后构建了由肿瘤微环境感知模块、深度门控注意力模块、相似度感知注意力模块和分类层组成的多示例分类网络,实现了对全视野数字病理图像的分类和病灶检测。其中肿瘤微环境感知模块可以建模肿瘤微环境中的拓扑结构信息,使网络学习到的特征具有更高的鲁棒性;深度门控注意力模块和相似度感知模块相结合可以更加准确地赋予每个图像块对应的权重以实现对病灶区域更加精准的检测。还设计了图像增广方法的自监督对比学习任务,减少全视野数字病理图像因染色、成像等因素产生的颜色差异对网络产生影响,且训练过程无需任何标签。
-
公开(公告)号:CN115082743A
公开(公告)日:2022-09-20
申请号:CN202210980903.5
申请日:2022-08-16
Applicant: 之江实验室
Abstract: 本发明公开了一种考虑肿瘤微环境的全视野数字病理图像分类系统及构建方法,该方法首先进行全视野数字病理图像的特征提取,随后构建了由肿瘤微环境感知模块、深度门控注意力模块、相似度感知注意力模块和分类层组成的多示例分类网络,实现了对全视野数字病理图像的分类和病灶检测。其中肿瘤微环境感知模块可以建模肿瘤微环境中的拓扑结构信息,使网络学习到的特征具有更高的鲁棒性;深度门控注意力模块和相似度感知模块相结合可以更加准确地赋予每个图像块对应的权重以实现对病灶区域更加精准的检测。还设计了图像增广方法的自监督对比学习任务,减少全视野数字病理图像因染色、成像等因素产生的颜色差异对网络产生影响,且训练过程无需任何标签。
-
公开(公告)号:CN113838161A
公开(公告)日:2021-12-24
申请号:CN202111413375.7
申请日:2021-11-25
Applicant: 之江实验室
Abstract: 本发明公开了一种基于图学习的稀疏投影重建方法,属于医学影像领域。该方法通过在投影重建方法中每次迭代的过程中进行一次全局随机采样,获取每个像素点的全局随机采样点;再根据门函数进行随机点的相似筛选;最后利用这些相似的随机点通过图学习的方法修正每个像素点的像素值。以此来消除因为硬件原因或者稀疏重建方法本身所导致的形状伪影。通过本发明,可以在传统的投影重建方法中直接引入该方法,用于修复稀疏角度导致的重建后图像中的形状伪影,大大的提升成像质量。
-
公开(公告)号:CN116030078B
公开(公告)日:2023-06-30
申请号:CN202310315976.7
申请日:2023-03-29
Applicant: 之江实验室
IPC: G06T7/11 , G06T7/00 , G06N3/0455 , G06N3/0475 , G06N3/094
Abstract: 本发明公开了一种多任务学习框架下结合注意力的肺叶分割方法及系统。本发明将肺叶分割任务作为主要任务、肺实质分割任务作为辅助任务,并行计算肺叶分割任务和肺实质分割任务;并在网络中插入通道注意力模块和锐化空间注意力模块,通道注意力模块能够强化通道特征信息,锐化空间注意力能够提升边缘测试效果,该网络能够自适应地权衡不同的任务,优化多任务目标的网络,最后训练得到的分割模型能实现三维图像的快速准确分割。本发明能有效利用神经网络学习多任务之间的共有特征,有望提取到更加全面的特征,强化主任务肺叶分割网络性能,在不增加实际使用时深度网络复杂度的情况下,提高深度网络对肺叶的分割能力。
-
公开(公告)号:CN115222752A
公开(公告)日:2022-10-21
申请号:CN202211138097.3
申请日:2022-09-19
Applicant: 之江实验室
IPC: G06T7/11 , G06T7/00 , A61B6/00 , G06T7/90 , G06V10/25 , G06V10/764 , G06V10/774 , G06V10/82
Abstract: 本发明公开了一种基于特征解耦的病理图像特征提取器训练方法及装置,该训练方法通过构建特征解耦网络,同时设置六个子损失函数对网络进行约束训练,其中特征解耦网络包含多个生成对抗网络,可以将病理图像解耦分解成颜色信息特征和组织结构信息特征,在保留纯净无杂质的组织结构信息的同时消除人为造成的染色差异对网络性能的负面影响。设置的损失函数最大程度的保证颜色编码器和组织结构编码器特征提取的针对性。训练获得的特征提取器可以覆盖不同病理图像的多个颜色域并引入不同域的颜色变化,适应来自不同中心的病理图像,具有更高的泛化性能。
-
公开(公告)号:CN113506296B
公开(公告)日:2021-12-28
申请号:CN202111061904.1
申请日:2021-09-10
Applicant: 之江实验室
Abstract: 本发明公开了一种基于先验知识CT亚区影像组学的慢阻肺诊断装置,属于医学影像领域。该诊断装置包括:基于先验知识的亚区划分模块,用于根据肺内部CT值将患者CT肺部图像划分为三个亚区,其中,亚区一的肺内部CT值的范围为(‑1024,‑950)、亚区二的肺内部CT值的范围为(‑190,110)、亚区三的肺内部CT值的范围为(‑950,‑190);特征提取模块,用于分别提取三个亚区的影像组学特征;并获取亚区一的LAA‑950I特征;分类模块,用于根据提取的特征区分病人是否患有慢性阻塞性肺疾病。本发明装置通过划分亚区,分别提取不同结构的特征,对提高慢阻肺的诊断效率有着更加积极的作用。
-
-
公开(公告)号:CN116152246A
公开(公告)日:2023-05-23
申请号:CN202310422220.2
申请日:2023-04-19
Applicant: 之江实验室
Abstract: 本说明书公开了一种图像识别方法、装置、设备及存储介质,可以基于待识别CT图像中包含的每个体素对应的CT值,提取出待识别CT图像的统计数据,进而可以通过识别模型根据待识别CT图像的统计数据,确定出待识别CT图像的第一特征表示,以及根据待识别CT图像,确定出待识别CT图像的第一特征表示,进而可以根据待识别CT图像的统计数据以及待识别CT图像的图像信息,对待识别CT图像进行识别,进而可以提高识别的准确性。
-
-
-
-
-
-
-
-
-