-
公开(公告)号:CN111607506A
公开(公告)日:2020-09-01
申请号:CN202010528204.8
申请日:2020-06-11
Applicant: 上海前瞻创新研究院有限公司 , 中国科学院上海微系统与信息技术研究所
Abstract: 本发明公开了一种薄膜式核酸扩增微流控芯片及其制备和应用方法,涉及生物分子检测技术领域,包括多个通过通道连接的反应腔;反应腔包括由裂解腔、纯化腔、预扩增腔以及扩增腔;所述裂解腔上设有进样口,并与所述纯化腔上连通;所述纯化腔分别连通有预装核酸纯化液的第一储液腔和预装核酸洗脱液的第二储液腔;所述纯化腔内预封装有二氧化硅包被的磁珠并与所述预扩增腔连通;所述预扩增腔连通有预装核酸扩增稀释液的第三储液腔,并与所述扩增腔连通;解决了现有技术中的无法将裂解、纯化和扩增过程完整集成在同一芯片上,操作繁琐且在操作过程中容易被污染的问题。
-
公开(公告)号:CN116283903B
公开(公告)日:2025-05-06
申请号:CN202310292147.1
申请日:2023-03-23
Applicant: 中国科学院上海微系统与信息技术研究所 , 上海前瞻创新研究院有限公司
IPC: C07D401/04 , C09K11/06 , G01N21/64
Abstract: 本发明提供一种基于萘酰亚胺衍生物的检测探针、制备方法及其应用,该检测探针的制备方法为:S1、将化合物Ⅰ、咪唑和无水碳酸钾的混合物加入溶剂中搅拌溶解,然后在氮气保护下加热反应,冷却至室温,得混合液;S2、将混合液过滤,然后将得到的粗产品溶液减压蒸馏除去溶剂,得固体产物;S3、将固体产物经柱层层析硅胶分离后,再用洗脱剂提纯,得固体化合物Ⅱ,即为基于萘酰亚胺衍生物的检测探针。本发明中的检测探针用于ClO‑、Fe3+、Cr3+、Al3+的检测,具有高选择性、高灵敏性,实现原位、实时、比率响应,检测限可达到10‑9mol/L数量级,且该检测探针的制备方法简单易行、成本低廉,可满足对多种离子同时检测。
-
公开(公告)号:CN119830059A
公开(公告)日:2025-04-15
申请号:CN202311326443.5
申请日:2023-10-13
Applicant: 上海大学 , 上海前瞻创新研究院有限公司
IPC: G06F18/24 , G06F18/10 , G06F18/213 , H03H17/02
Abstract: 本发明提供一种SSVEP脑电信号识别方法及系统、存储介质及电子设备,包括:获取SSVEP脑电信号;获取有效SSVEP脑电信号;提取SSVEP脑电信号的各个子带针对各个刺激目标的相关系数;对相关系数进行归一化处理,获取归一化相关系数;计算有效SSVEP脑电信号的各个子带对应的可信度参数;将可信度参数映射至预设区间,获取映射可信度参数;针对不同的子带,设置权重系数;基于映射可信度参数对所述权重系数进行微调,获取自适应权重系数;计算SSVEP脑电信号针对各个刺激目标的子带相关系数,并选取子带相关系数的最大值对应的刺激目标作为识别结果。本发明的SSVEP脑电信号识别方法及系统、存储介质及电子设备通过自适应调整脑电信号不同子带的权重,实现脑电信号的精准识别。
-
公开(公告)号:CN114339880B
公开(公告)日:2025-04-08
申请号:CN202111616377.6
申请日:2021-12-27
Applicant: 上海前瞻创新研究院有限公司 , 中国科学院上海高等研究院
IPC: H04W28/02 , H04W28/08 , H04W40/04 , H04L67/06 , H04L67/568
Abstract: 本发明提供一种路径缓存决策方法、兴趣请求方法、介质及节点,路径缓存决策方法包括:内容提供者节点根据文件内容的大小和网络拥塞度对文件内容进行拆分,按照转发信息表中存储的路由信息,将拆分的内容片段转发至下一路由节点;其中,文件内容包含的内容片段的片段数和缓存片段序列值;待路由节点接收到所述内容片段后,判断是否存储该内容片段;若是,予以存储该内容片段;若否,判断该路由节点是否为内容消费者节点;若是,则接收内容片段;若否,将内容片段按转发信息表中的路由信息转发至下一路由节点。本发明相较于文件整体缓存减少了兴趣包请求和内容回传平均跳数,一定程度上缓解了网络的拥塞程度,从而降低网络兴趣内容的平均请求时延。
-
公开(公告)号:CN119128709A
公开(公告)日:2024-12-13
申请号:CN202410998568.0
申请日:2024-07-24
Applicant: 上海大学 , 上海前瞻创新研究院有限公司
IPC: G06F18/2431 , G06F18/213 , G06F18/10 , G06N3/0455 , G06N3/0464 , G06N3/049 , G06N3/084 , G06F3/01
Abstract: 本发明提供一种基于脑电信号的情绪识别方法及系统、存储介质及电子设备,所述方法包括以下步骤:获取脑电信号及对应的标签信息;基于脑电信号的电极位置对所述脑电信号进行预处理,获取三维脑特征图;基于所述三维脑特征图和所述标签信息构成脑电信号数据集;基于所述脑电信号数据集训练情绪识别深度模型,以基于训练好的情绪识别深度模型实现情绪识别。本发明的基于脑电信号的情绪识别方法及系统、存储介质及电子设备基于卷积神经网络和Transformer的混合结构,利用脑电信号实现了准确的情绪识别。
-
公开(公告)号:CN119089143A
公开(公告)日:2024-12-06
申请号:CN202411201265.8
申请日:2024-08-29
Applicant: 上海大学 , 上海前瞻创新研究院有限公司
Abstract: 本申请提供一种生物信号频率的识别方法、系统、电子设备及介质,所述方法包括:将获取到的参考信号正交矩阵进行存储;获取生物原始信号;基于所述生物原始信号获取生物原始信号正交矩阵;基于存储的所述参考信号正交矩阵与所述生物原始信号正交矩阵,获取最大相关系数;将具有所述最大相关系数的频率作为生物信号频率。本申请能够灵活适应多场景,在低功耗、低时间复杂度的情况下获取最大相关系数,并以此识别生物信号频率,并且计算精度和信息传输速率不受影响。
-
公开(公告)号:CN116098636B
公开(公告)日:2024-10-22
申请号:CN202310113728.4
申请日:2023-02-14
Applicant: 上海前瞻创新研究院有限公司 , 中国科学院上海高等研究院
Abstract: 本发明提供一种基于SSVEP的脑机接口刺激范式生成、检测方法、系统、介质、终端,所述于SSVEP的脑机接口刺激范式生成方法包括以下步骤:设置多个目标,令每个目标以同一频率和同一相位闪烁;在每个目标的闪烁框内设置不同的颜色。本发明的基于SSVEP的脑机接口刺激范式生成、检测方法、系统、介质、终端通过在闪烁框中设置不同的颜色来实现闪烁频率和相位完全一致的场景下脑机信号的有效应用。
-
公开(公告)号:CN118558381A
公开(公告)日:2024-08-30
申请号:CN202410843656.3
申请日:2024-06-27
Applicant: 中国科学院上海微系统与信息技术研究所 , 上海前瞻创新研究院有限公司 , 华东理工大学
Abstract: 本发明涉及一种微流控芯片、集成芯片,本发明设计的全血血浆分离芯片是具有快速、高通量、无堵塞的特点,整个血浆的分离通道结构都在同一个平面上,结合惯性聚焦和Fahraeus效应,采用的无细胞血浆区域中高阻的侧向分叉通道进行血浆的分离,不仅可在较高的流速下实现无堵塞的血浆分离。本发明在血浆分离器结构的基础上,设计适配于不同生物传感器集成的全血血浆分离微流控芯片结构以及该芯片与不同异质基材的生物传感器的集成方法。
-
公开(公告)号:CN117965301A
公开(公告)日:2024-05-03
申请号:CN202410006195.4
申请日:2024-01-03
Applicant: 上海前瞻创新研究院有限公司 , 中国科学院上海微系统与信息技术研究所
Abstract: 本发明公开一种多器官芯片、制备方法及使用方法,属于生物微流控领域。所述多器官芯片包括芯片基体,所述芯片基体中设有培养孔和灌流通道;所述培养孔至少为两个,上方敞口;所述灌流通道为两端开口的封闭管道;所述灌流通道与各个培养孔侧壁底部设有贯通间隙,所述贯通间隙内构建有水凝胶屏障。本发明提供的多器官芯片培养孔与灌流通道平行设置,便于与自动化移液集成、便于显微观察和成像分析,通过在培养孔与灌流通道之间构建水凝胶屏障,有望在多器官芯片构建更加仿生的血管‑器官屏障,从而帮助构建更加逼真的体外生理、病理模型,服务于新药筛选、生理病理研究、精确医疗等领域。
-
公开(公告)号:CN117843976A
公开(公告)日:2024-04-09
申请号:CN202311751571.4
申请日:2023-12-19
Applicant: 上海前瞻创新研究院有限公司
Abstract: 本发明提供一种用于Hg2+高灵敏、高选择性检测的Cu‑MOF材料,所述Cu‑MOF材料以铜为金属中心,以咪唑环氮配体L1和萘酰亚胺类配体L2为有机桥联配体,所述Cu‑MOF材料的化学分子式为:[Cu5(L1)3(L2)4·2H2O]n,n代表该材料的内部分子组成为最简分子式的无限交替排列;本发明还提供一种用于Hg2+高灵敏、高选择性检测的Cu‑MOF材料的制备方法及应用;本发明用于Hg2+高灵敏、高选择性检测的Cu‑MOF材料4,8‑连接的3D网络结构,不仅具有较好的溶剂稳定向,能够实现对水中汞离子高选择性检测,而且为汞离子检测提供了一中新的荧光材料,同时为从结构设计上合理构筑更稳定的LMOFs提供了新思路。
-
-
-
-
-
-
-
-
-