一种基于并行度量学习的入侵检测方法

    公开(公告)号:CN116743473A

    公开(公告)日:2023-09-12

    申请号:CN202310783622.5

    申请日:2023-06-29

    Abstract: 本发明提出一种基于并行度量学习的入侵检测方法,属于入侵检测技术领域。一种基于并行度量学习的入侵检测方法由嵌入模块、度量模块和分类器组成模型;嵌入模块用于接收五元组数据,度量模块用于获得预测相似度,分类器用于获取预测类别;具体实现过程:S1.训练模型;S2.将网络流量输入模型中,模型输出识别结果,若网络流量为非入侵流量,输出结果为0,否则,输出结果为1。解决现有技术中模型的识别效率低实时性差的技术问题;本发明只需利用嵌入模块对网络流量进行特征提取,再将所提取的特征输入分类器中,即可获得最终的识别结果,无需再和支持集中的样本一一比较,可大幅提升识别效率和识别准确率。

    基于多偏置交互的纵向联邦场景神经网络训练方法、电子设备及存储介质

    公开(公告)号:CN116362326A

    公开(公告)日:2023-06-30

    申请号:CN202310143695.8

    申请日:2023-02-21

    Abstract: 基于多偏置交互的纵向联邦场景神经网络训练方法、电子设备及存储介质,属于隐私计算技术领域。为解决在安全传输的前提下提高效率的目的。本发明训练参与各方的模型结构为全连接层、Dropout层,包括训练发起方、训练协助方将训练发起方的数据、训练协助方的数据进行前向传播方法训练,得到前向传播方法的训练结果;将前向传播方法的训练结果进行反向传播方法训练,训练协助方和训练发起方分别进行模型参数的更新,完成一轮的训练,进入下一轮直至训练结果达到精度要求或者停止条件,完成基于多偏置交互的纵向联邦场景神经网络训练。本发明增加了训练各方之间的信息交互,特征的过滤功能得到多方数据信息的指导,结果更具说服力。

    一种智能云外语多媒体基于考核结果制定学习计划的方法、计算机及存储介质

    公开(公告)号:CN114119307B

    公开(公告)日:2022-08-02

    申请号:CN202111465889.7

    申请日:2021-12-03

    Abstract: 本发明提出一种智能云外语多媒体基于考核结果制定学习计划的方法、计算机及存储介质,属于云教学技术领域。首先,学生在考试开始提示后进行考试;其次,教学应用层将学生考试时的发音、形体以及文字答卷以及正确答案传输到数据交互层进行存储;再次,通过人工智能模块将学生多媒体答卷的音频音轨和视频口唇影像以及形体与正确答案进行比较给出评判结果,并将评判结果传输至数据交互层进行存储;再次,教师总结学生知识盲点,并记录在数据交互层;最后,按照该等级学生的学习遗忘大数据提供联系频率和联系内容,根据学生群历史数据选出实时更新教师教案和考试节点。

    一种基于去中心化DNS根区管理的智能合约系统

    公开(公告)号:CN113067836B

    公开(公告)日:2022-04-19

    申请号:CN202110423192.7

    申请日:2021-04-20

    Abstract: 一种基于去中心化DNS根区管理的智能合约系统,涉及互联网技术领域,用以解决现有根区管理去中心化技术所带来的治理主体不明确问题、名字空间分裂问题和恶意抢注问题。本发明的技术要点包括:账簿模块将根区管理中存在的各类数据抽象为过程、协议和资源;合约模块将对协议和资源数据的更新抽象为提案‑审核‑结束三阶段模型,并使用灵活的审核策略,从而支撑根区管理的多样性。本发明解决了传统根区管理的中心化、透明性低、自动化程度低等问题,系统可以使根区管理的多个参与方均能访问全部的根区管理数据,并以高度自动化的方式来参与根区的多方管理。本发明可应用于对互联网中域名系统根区数据管理之中。

Patent Agency Ranking