-
公开(公告)号:CN116486085A
公开(公告)日:2023-07-25
申请号:CN202310474551.0
申请日:2023-04-27
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种遥感图像的场景描述方法,包括:S100,根据遥感图像构建遥感知识词库;S200,根据Mask2Former网络对所述遥感图像进行全景分割,得到全景分割结果并生成语义分割结果;S300,引入语义扩充模块,根据所述全景分割结果和所述语义分割结果对所述遥感图像进行语义扩充;S400,以ResNet特征提取网络为基础,引入基于通道的注意力模块,提取所述遥感图像中不同通道的语义特征信息;S500,以LSTM场景描述网络为基础,引入知识融合模块,生成关于所述遥感图像的场景描述语句。本发明能更加准确地描述高分遥感图像所携带的丰富语义及空间信息,可应用于遥感图像智能解译、遥感图像大数据管理等领域,具有广阔的前景。
-
公开(公告)号:CN116485652A
公开(公告)日:2023-07-25
申请号:CN202310465820.7
申请日:2023-04-26
Applicant: 北京卫星信息工程研究所
IPC: G06T3/40 , G06T7/13 , G06V10/44 , G06V10/774 , G06V10/764 , G06V10/82 , G06V10/80 , G06V10/54 , G06N3/0464 , G06N3/048 , G06N3/082
Abstract: 本发明涉及一种遥感影像车辆目标检测的超分辨率重建方法,包括:构建不同场景下丰富的高分辨率遥感影像数据集,对所述高分辨率遥感影像数据集进行预处理;根据所述高分辨率遥感影像数据集得到对应的低分辨率遥感影像数据集,构建目标超分重建数据集;提取所述低分辨率遥感影像数据集中低分辨率遥感影像的边缘特征;构建超分辨率重建模型,利用所述目标超分重建数据集和所述边缘特征训练优化所述超分辨率重建模型;利用所述超分辨率重建模型对目标进行高分辨率恢复和重建。通过实施本发明的上述方案,有效解决车辆目标因呈现出弱小特性而导致其检测率较低的问题,有效改善目标重建质量并降低重建的计算开销。
-
公开(公告)号:CN116450613A
公开(公告)日:2023-07-18
申请号:CN202310418313.8
申请日:2023-04-18
Applicant: 北京卫星信息工程研究所
IPC: G06F16/21 , G06F16/25 , G06F16/29 , G06F16/955
Abstract: 本发明涉及一种面向资源的地理样本数据服务方法、设备及存储介质,建立地理人工智能样本数据服务元数据描述的概念模型和逻辑模型;建立地理人工智能样本数据服务资源体系;构建面向资源的地理人工智能样本数据服务接口及接口与地理人工智能样本数据服务资源的映射关系;定义表述性状态转换风格的地理人工智能样本数据服务资源的统一资源描述标识符,并与样本数据服务接口绑定;发布地理人工智能样本数据服务的网络访问接口。本发明,增强了空间数据基础设施的智能化服务能力,从而支持建设人工智能就绪的空间数据基础设施,满足了多源异构的地理人工智能样本数据的共享服务需求,为地理人工智能样本数据的共享和应用提供有力支撑。
-
公开(公告)号:CN115272857B
公开(公告)日:2023-04-07
申请号:CN202210900863.9
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/0455 , G06N3/0464 , G06N3/08 , G06V10/764 , G06V10/77 , G06V10/80 , G06V10/82
Abstract: 本发明涉及一种基于注意力机制的多源遥感图像目标识别方法,包括:获取多源遥感图像及其对应的目标类别标签,并进行预处理;提取预处理后的多源遥感图像中的目标特征,对所述目标特征进行过滤,得到多源目标的关键特征;构建特征融合编码器并对所述关键特征进行融合,获得隐层特征数据;构建特征解码器并重构所述隐层特征数据;利用重构的隐层特征数据和所述关键特征对所述特征融合编码器和所述特征解码器进行优化;利用分类网络对所述隐层特征数据进行分类识别。本发明不仅实现多源遥感图像中的目标识别,还可提高识别的精度。
-
公开(公告)号:CN114998749B
公开(公告)日:2023-04-07
申请号:CN202210900855.4
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/0464 , G06N3/0475 , G06N3/094 , G06V10/764 , G06V10/774 , G06V10/82
Abstract: 本发明涉及一种用于目标检测的SAR数据扩增方法,包括:获取原始SAR图像数据集及其标注信息;对所述原始SAR图像数据集进行目标检测,结合所述标注信息,构建负样本集;利用所述标注信息获得所述原始SAR图像数据集中的目标样本,构建方位角目标样本集;构建基于自注意力机制的生成对抗网络,利用所述负样本集和所述方位角目标样本集对所述生成对抗网络进行迭代训练;评估所述生成对抗网络生成的样本质量,获得高质量的生成样本;在所述原始SAR图像数据集中插入所述高质量的生成样本,以及对应的标注信息。本发明实现SAR数据的自动扩增,提升SAR图像目标识别任务训练集中目标样本的多样性和均衡性。
-
公开(公告)号:CN114998748B
公开(公告)日:2023-02-03
申请号:CN202210900842.7
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/04 , G06N3/08 , G06V10/52 , G06V10/74 , G06V10/764 , G06V10/766 , G06V10/82
Abstract: 本发明涉及一种遥感图像目标精细识别方法、电子设备及存储介质,以遥感图像提取的目标特征向量作为输入,充分利用其中编码的多实例信息,将同一幅图片上各实例的相似度信息进行对比学习,结合粗粒度的任意目标检测网络进行端到端的训练,而无需额外设计,通过已知的目标类别标签应用于分类损失以训练相似度计算网络;同时应用于对比损失,增大相同细粒度类别实例之间的相似度,而削减不同细粒度类别实例之间的相似度,增强了模型对实例之间的辨别区分能力。
-
公开(公告)号:CN113780152A
公开(公告)日:2021-12-10
申请号:CN202111043241.0
申请日:2021-09-07
Applicant: 北京航空航天大学 , 北京卫星信息工程研究所
Abstract: 本发明公开一种基于目标感知的遥感图像船只小目标检测方法,基于多任务学习、YOLOv5、特征金字塔、多头注意力、超分辨重建等方法,具体步骤如下:一、读入图像数据并进行预处理;二、构造基于目标感知的多任务深度神经网络;三、训练卷积神经网络,得到静态模型参数;四、利用去除目标感知分支后的训练好的模型进行遥感图像目标检测。本发明通过设计一种新型的基于目标感知的多任务深度学习网络,能够对低分辨率宽幅遥感图像下的船只小目标有更加优秀的检测性能,并保证实时的检测速度。输入为遥感图像,输出为船只小目标的位置信息,自动化程度高,能够大幅度提高效率、准确度并降低成本。
-
公开(公告)号:CN119810429A
公开(公告)日:2025-04-11
申请号:CN202510299055.5
申请日:2025-03-13
Applicant: 北京卫星信息工程研究所
IPC: G06V10/25 , G06V20/10 , G06V20/70 , G06V10/44 , G06V10/52 , G06V10/42 , G06V10/77 , G06V10/80 , G06V10/764 , G06V10/766 , G06V10/82 , G06N3/0464 , G06N3/045 , G06N3/09 , G06N3/048
Abstract: 本发明涉及一种基于层级知识引导的可见光遥感图像目标细粒度检测方法,包括:获取可见光遥感图像数据,构建多语义层级的标签体系;提取可见光遥感图像特征,通过RPN网络生成多尺度感兴趣区域特征;对多尺度的感兴趣区域特征采用多支路提取多层级的语义特征;对多层级的语义特征进行相邻层级的局部‑全局特征融合,得到增强特征;使用多个层级标签监督多层级分类,在第一语义层级监督回归;在推理阶段精简网络结构,提高推理速度。本发明,针对可见光遥感图像中的多类目标,实现了目标细粒度检测过程中的层级关系及信息的注入,结合多层特征融合,增强网络对目标的共有特征和细粒度特征的提取和学习。
-
公开(公告)号:CN119445380A
公开(公告)日:2025-02-14
申请号:CN202411502090.4
申请日:2024-10-25
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种基于遥感影像的建筑物智能提取方法:步骤S1、获取高分辨率数据集;步骤S2、设计基于编码‑解码结构的遥感影像建筑物语义分割网络,包括特征提取骨架网络和语义分割解码器;步骤S3、设计基于生成对抗网络的遥感影像建筑物DSM估计网络,包括DSM生成器和DSM判别器,DSM生成器包括DSM生成器编码器和DSM生成器解码器;步骤S4、设计特征融合与加强模块;步骤S5、设计损失函数;步骤S6、根据高分辨率数据集和损失函数,训练优化遥感影像建筑物智能提取网络;步骤S7、通过训练完成的遥感影像建筑物智能提取网络进行基于遥感影像的建筑物智能提取。本发明的方法解决了DSM获取代价昂贵的问题,有效改善提取遥感影像中的建筑物的性能。
-
公开(公告)号:CN118736431A
公开(公告)日:2024-10-01
申请号:CN202410739940.6
申请日:2024-06-07
Applicant: 北京卫星信息工程研究所
IPC: G06V20/13 , G06T5/50 , G06T3/4053 , G06V10/764 , G06V10/774 , G06V10/80 , G06F17/16 , G06F17/18 , G06N3/0464 , G06N3/0455 , G06N3/042 , G06N3/048 , G06N3/084
Abstract: 本发明涉及一种基于遥感图像变化检测的场景态势生成方法,包括:获取同一区域不同时相的两幅高分辨率卫星遥感影像,并进行预处理;构建基于Swin Transformer的双分支U‑net变化检测网络,对不同时相的两幅所述高分辨率卫星遥感影像进行变化检测;根据变化检测网络输出的变化地物的边界信息对空间关系建模,构建图卷积神经网络,生成边集和邻接矩阵;使用人工标注的遥感变化检测数据集,对图卷积神经网络进行训练,得到基于遥感图像变化检测的场景态势生成模型;利用训练好的基于遥感图像变化检测的场景态势生成模型,对测试集中的数据进行测试,得到遥感变化图像的态势。本发明,充分利用双时相遥感图像的丰富语义信息,实现变化场景态势的自动生成。
-
-
-
-
-
-
-
-
-