-
公开(公告)号:CN111992717B
公开(公告)日:2021-11-09
申请号:CN202010891083.3
申请日:2020-08-30
Applicant: 中南大学
Abstract: 本发明提供一种选区激光熔融制备金属梯度材料的方法,采用同种成分金属材料进行选区激光熔融制备组织结构梯度材料,通过计算机精确控制打印件不同分区的3D打印参数,实现同种成分材料不同分区的组织结构梯度分布,从而一体化快速成形具有梯度组织结构的金属材料,大幅提高材料的性能,实现单一成分金属材料不能满足的性能要求。本发明可以根据服役环境定制金属梯度材料的显微组织,在材料组成、组织、性能及外形尺寸控制方面具有高度柔性。通过合理的结构设计、材料选择以及工艺匹配,可以发展出集材料设计、制备、成形及组织性能控制于一体的柔性智能制造技术,简单高效、成本低,在新型梯度结构的直接成形方面具有显著的技术优势。
-
公开(公告)号:CN111992708B
公开(公告)日:2021-10-22
申请号:CN202010891223.7
申请日:2020-08-30
Applicant: 中南大学
IPC: B22F1/02 , B22F3/105 , B22F3/24 , B33Y10/00 , B33Y70/10 , B33Y40/20 , C22C26/00 , C22C9/00 , C22C1/05 , C23C14/18 , C23C14/16 , C23C14/35 , C23C14/46 , C23C14/58
Abstract: 本发明公开一种制备高性能金刚石/铜基复合材料的方法,针对铜与金刚石润湿性差、界面结合弱,以及金刚石高温下易发生石墨化等问题,本发明采用磁控溅射技术在金刚石表面均匀镀覆一层B或强碳化物元素Ti、Zr、Nb、Cr来改善其界面结合强度,再溅射一层金属铜,厚度为1‑3μm;然后将表面改性后的金刚石颗粒在500‑700℃热处理5‑30min,使镀层之间互相扩散、反应,实现冶金结合;利用选区激光熔融(SLM))技术对铜合金粉末及表面改性后的金刚石颗粒进行烧结成形,极快的冷却速度显著细化基体合金组织,提高了复合材料的强度,双镀层表面改性有效的避免了金刚石在高能量激光束下石墨化;采用放电等离子烧结处理(SPS),进一步提高制件致密度;结合时效热处理,使固溶原子在铜基体中均匀析出,实现复合材料的热导性能和力学性能的综合提升。
-
公开(公告)号:CN111906311B
公开(公告)日:2021-05-28
申请号:CN202010891107.5
申请日:2020-08-30
Applicant: 中南大学
Abstract: 本发明提供一种预防选区激光熔融镍基高温合金开裂的方法,属于增材制造领域。本发明通过降低镍基高温合金中Zr、B低熔点相形成元素,并调整合金中Al、Ti的总含量至≤4.5wt%,结合特殊的选区激光熔融(SLM)工艺参数控制,制备出了致密度高、无裂纹缺陷、力学性能优良的制件。本发明组分设计合理,制备工艺简单,所得制件性能优良,便于大规模的应用。
-
公开(公告)号:CN111992708A
公开(公告)日:2020-11-27
申请号:CN202010891223.7
申请日:2020-08-30
Applicant: 中南大学
IPC: B22F1/02 , B22F3/105 , B22F3/24 , B33Y10/00 , B33Y70/10 , B33Y40/20 , C22C26/00 , C22C9/00 , C22C1/05 , C23C14/18 , C23C14/16 , C23C14/35 , C23C14/46 , C23C14/58
Abstract: 本发明公开一种制备高性能金刚石/铜基复合材料的方法,针对铜与金刚石润湿性差、界面结合弱,以及金刚石高温下易发生石墨化等问题,本发明采用磁控溅射技术在金刚石表面均匀镀覆一层B或强碳化物元素Ti、Zr、Nb、Cr来改善其界面结合强度,再溅射一层金属铜,厚度为1-3μm;然后将表面改性后的金刚石颗粒在500-700℃热处理5-30min,使镀层之间互相扩散、反应,实现冶金结合;利用选区激光熔融(SLM))技术对铜合金粉末及表面改性后的金刚石颗粒进行烧结成形,极快的冷却速度显著细化基体合金组织,提高了复合材料的强度,双镀层表面改性有效的避免了金刚石在高能量激光束下石墨化;采用放电等离子烧结处理(SPS),进一步提高制件致密度;结合时效热处理,使固溶原子在铜基体中均匀析出,实现复合材料的热导性能和力学性能的综合提升。
-
公开(公告)号:CN108907210B
公开(公告)日:2020-04-07
申请号:CN201810846733.5
申请日:2018-07-27
Applicant: 中南大学
Abstract: 本发明提供一种制备增材制造用实心球形金属粉末的方法,属于增材制造领域。可针对不同的增材制造工艺对粉末的不同需求,对雾化粉末进行机械球磨、等离子球化,通过不同直径的磨球配伍和球磨参数协同作用,磨球制备得到所需粒径范围的球磨粉末,然后使用等离子球化对球磨粉末进行球化处理,得到粒径分布均匀、实心无缺陷、球形度高、流动性好的粉末,该粉末完全满足增材制造要求。
-
公开(公告)号:CN108994304A
公开(公告)日:2018-12-14
申请号:CN201810846735.4
申请日:2018-07-27
Applicant: 中南大学
CPC classification number: B22F3/24 , B22F3/105 , B22F2003/248 , B33Y40/00
Abstract: 本发明提供一种消除金属材料增材制造裂纹提高力学性能的方法,属于增材制造技术领域。本发明对增材制造成形件依次进行去应力退火和放电等离子烧结处理;所述去应力退火为:在保护气氛中,升温至退火温度,保温;所述退火温度为(0.3-0.4)T再;所述放电等离子烧结的温度为(0.8-0.9)T再,时间为10~20min。本发明对于增材制造的金属依次采用了特定参数的去应力退火、特定参数的SPS烧结,不仅消除了产品的裂纹,还实现了力学性能的大幅度提高。
-
公开(公告)号:CN108907210A
公开(公告)日:2018-11-30
申请号:CN201810846733.5
申请日:2018-07-27
Applicant: 中南大学
Abstract: 本发明提供一种制备增材制造用实心球形金属粉末的方法,属于增材制造领域。可针对不同的增材制造工艺对粉末的不同需求,对雾化粉末进行机械球磨、等离子球化,通过不同直径的磨球配伍和球磨参数协同作用,磨球制备得到所需粒径范围的球磨粉末,然后使用等离子球化对球磨粉末进行球化处理,得到粒径分布均匀、实心无缺陷、球形度高、流动性好的粉末,该粉末完全满足增材制造要求。
-
公开(公告)号:CN108802079A
公开(公告)日:2018-11-13
申请号:CN201810845453.2
申请日:2018-07-27
Applicant: 中南大学
IPC: G01N23/2202
Abstract: 本发明公开了一种铁磁性合金粉末的第二相表征方法,采用填充有铁磁性粉末的泡沫镍或镍网作为阳极,通过电解将铁磁性合金粉末中第二相与粉末基体分离,得到含有第二相的电解液;然后经磁选、无水乙醇稀释、超声分散后,滴至超薄碳支撑膜、干燥,制得TEM检测样品;再采用TEM进行结构观察及表征。本发明可以表征铁磁性合金粉末中小于0.5μm第二相的形貌、结构、尺寸等特征,特别是尺寸小于50nm的第二相。本发明分离获得的第二相保留了原始结构,方法简单、高效,电解条件易获得,重复性强,可用于多种粉末材料第二相的分析表征。
-
公开(公告)号:CN112008087A
公开(公告)日:2020-12-01
申请号:CN202010891037.3
申请日:2020-08-30
Applicant: 中南大学
IPC: B22F9/04 , B22F3/105 , B22F1/00 , B22F1/02 , C22C1/05 , C22C1/10 , C23C18/36 , C23C18/18 , B82Y30/00 , B82Y40/00 , B33Y70/10
Abstract: 本发明提供一种提高碳纳米材料增强镍基高温合金综合性能的方法,属于粉末冶金及高温合金领域。针对碳纳米材料增强镍基高温合金降低高温抗氧化性能问题,本发明首次提出对碳纳米材料表面包覆致密Ni层,解决碳纳米材料易团聚、与基体界面结合差等导致的力学性能和高温抗氧化性能差的问题;通过特定的球磨工艺,获得碳纳米材料均匀分散的混合粉末,实现碳纳米材料的进一步均匀分散;通过放电等离子烧结(SPS)、热等静压、热压、热挤压或热锻,或3D打印等粉末成形方法,制备得到碳纳米材料增强René104镍基复合材料,所制备的材料力学性能优异,同时具有优异高温抗氧化性能,有效解决了碳纳米材料增强金属基复合材料无法作为高温结构材料使用的难题。
-
公开(公告)号:CN111961904A
公开(公告)日:2020-11-20
申请号:CN202010891044.3
申请日:2020-08-30
Applicant: 中南大学
IPC: C22C1/05 , C22C1/10 , C22C32/00 , C22C19/03 , C22C14/00 , C22C21/02 , C22F1/043 , C22F1/10 , C22F1/18 , B22F3/105 , B33Y70/10
Abstract: 本发明提供一种纳米陶瓷相增强金属基复合材料的制备方法,以金属材料为基体,以陶瓷颗粒作为增强相。采用微米级TiC、TiB2、WC和A12O3中的一种或多种陶瓷颗粒作为原料,添加陶瓷颗粒的质量百分比为1.0~5.0%,通过特定的球磨工艺制备纳米陶瓷均匀分布的金属基复合粉末,通过3D打印技术制备纳米陶瓷相金属基复合材料。所制备的金属基复合材料,纳米陶瓷相分布均匀,具有优异的力学性能。采用微米级陶瓷颗粒,成本低;可以一体成形制备任意复杂形状的零件,提高材料利用率。
-
-
-
-
-
-
-
-
-