空间三维大尺度运动学仿真系统及方法

    公开(公告)号:CN111872938B

    公开(公告)日:2022-01-25

    申请号:CN202010753564.8

    申请日:2020-07-30

    Abstract: 本发明提供了一种空间三维大尺度运动学仿真系统及方法。空间三维大尺度运动学仿真系统包括实验场地、目标飞行器模拟机构、任务飞行器模拟机构。目标飞行器模拟机构包括目标飞行器和第一工业机械臂,第一工业机械臂的末端连接于目标飞行器。任务飞行器模拟机构包括任务飞行器、第二工业机械臂和全方位移动平台,第二工业机械臂的基座固定于全方位移动平台上,第二工业机械臂的末端连接于任务飞行器,全方位移动平台设置在实验场地上并能够在实验场地上移动。通过本发明的空间三维大尺度运动学仿真方法,通过第二机械臂与全方位移动平台的结合,突破了地面实验环境的限制,实现了较大范围内的运动学仿真,增加了仿真系统的灵活性。

    空间三维大尺度运动学仿真系统及方法

    公开(公告)号:CN111872938A

    公开(公告)日:2020-11-03

    申请号:CN202010753564.8

    申请日:2020-07-30

    Abstract: 本发明提供了一种空间三维大尺度运动学仿真系统及方法。空间三维大尺度运动学仿真系统包括实验场地、目标飞行器模拟机构、任务飞行器模拟机构。目标飞行器模拟机构包括目标飞行器和第一工业机械臂,第一工业机械臂的末端连接于目标飞行器。任务飞行器模拟机构包括任务飞行器、第二工业机械臂和全方位移动平台,第二工业机械臂的基座固定于全方位移动平台上,第二工业机械臂的末端连接于任务飞行器,全方位移动平台设置在实验场地上并能够在实验场地上移动。通过本发明的空间三维大尺度运动学仿真方法,通过第二机械臂与全方位移动平台的结合,突破了地面实验环境的限制,实现了较大范围内的运动学仿真,增加了仿真系统的灵活性。

    一种基于数据驱动的机器人直线轴定位误差补偿方法

    公开(公告)号:CN109062139B

    公开(公告)日:2020-04-17

    申请号:CN201810906285.3

    申请日:2018-08-10

    Applicant: 清华大学

    Abstract: 本发明提出一种基于数据驱动的机器人直线轴定位误差补偿方法,属于机器人自动化装配技术领域。该方法在机器人直线轴末端放置靶球并在机器人空间内设置若干标志点,控制机器人将靶球运动到每个标志点,得到每个标志点在机器人坐标系下名义位置作为训练集的输入值;对每个标志点的实际位置进行测量,比较每个标志点名义位置与实际位置的差值作为该标志点的空间定位误差作为训练集的输出值;使用高斯过程回归模型进行训练,得到训练完毕高斯误差模型;利用高斯误差模型对机器人的空间定位误差进行补偿,得到补偿后的机器人运动学参数。本发明测量过程简单方便,可获得高精度的测量结果,从而实现对自动制孔系统运动误差的高精度实时在线补偿。

    一种基于激光跟踪仪的多轴孔自动化对准方法

    公开(公告)号:CN109093376B

    公开(公告)日:2020-04-03

    申请号:CN201810939232.1

    申请日:2018-08-17

    Applicant: 清华大学

    Abstract: 本发明提出一种基于激光跟踪仪的多轴孔自动化对准方法,属于大型零部件装配控制技术领域。该方法首先搭建由激光跟踪仪,机械臂和计算机组成的多轴孔自动化对准系统,将带轴部件安装在机械臂端面;分别建立带轴部件坐标系和带孔部件坐标系,得到两个坐标系间的旋转矩阵和平移向量;在带轴部件上安装4个不共线的反射靶球,计算每个靶球对应的目标位置;获取机械臂的初始的雅可比矩阵;从初始位置开始,通过迭代控制机械臂的运动,使得带轴部件逐渐靠近带孔部件,当4个反射靶球到达目标位置时,完成带轴部件和带孔部件的对准。本发明利用激光跟踪仪的测量数据闭环控制机械臂的运动,可实现多轴孔高精度自动化对准,提高装配效率和鲁棒性。

    一种利用深度强化学习实现机器人多轴孔装配的方法

    公开(公告)号:CN108161934A

    公开(公告)日:2018-06-15

    申请号:CN201711420089.7

    申请日:2017-12-25

    Applicant: 清华大学

    Abstract: 本发明涉及一种利用深度强化学习实现机器人多轴孔装配的方法,属于机器人装配技术领域。本发明方法在训练过程中,将利用传统模糊力控制方法与深度强化学习网络基于仿真模型产生的专家经验数据和普通经验数据加入经验数据集,从经验数据集中随机抽取经验数据对深度强化学习网络进行训练,使该网络的装配动作能够快速的达到传统模糊控制方法的装配水平并且继续训练可以超过传统模糊控制方法的装配效果。将利用仿真模型训练好的深度强化学习网络直接用于实际机器人多轴孔装配任务,本发明方法利用仿真模型产生的经验数据进行训练,解决了实际装配环境无法提供足够训练数据的难题同时也降低了训练的成本。

    叉耳耳片装配体销孔同轴度测量方法

    公开(公告)号:CN107860340A

    公开(公告)日:2018-03-30

    申请号:CN201711043834.0

    申请日:2015-10-20

    CPC classification number: G01B11/27

    Abstract: 本发明提供了一种叉耳耳片装配体销孔同轴度测量方法,其包括步骤:S1,将相机和光源分别沿销孔轴线安装于叉耳销孔的两侧,使光源发出的光能透过叉耳销孔被相机捕捉;S2,将耳片装入叉耳中以构成叉耳耳片装配体,使耳片销孔和叉耳销孔部分重合,能够透过光;S3,打开光源,利用相机从销孔轴线方向拍摄叉耳耳片装配体的销孔图像;S4,图像处理并提取所需特征;S5,通过提取的特征判断叉耳销孔与耳片销孔是否同轴,如果不同轴,则给出耳片销孔轴线相对叉耳销孔轴线的偏离方向。在本发明中基于相机的使用,从销孔轴线方向拍摄叉耳耳片装配体的销孔图像,实时测量叉耳销孔与耳片销孔的同轴度并进行反馈控制,提高了装配精度。

    曲面法矢测量精度的优化方法

    公开(公告)号:CN104019779B

    公开(公告)日:2016-09-21

    申请号:CN201410271432.6

    申请日:2014-06-18

    Abstract: 本发明提供了一种曲面法矢测量精度的优化方法,包括步骤:S1,对整个待测工件曲面进行截面曲率分析:分别获得与X轴、Y轴垂直的一组截面截取曲面后获得曲线的曲率|K|X、|K|Y;S2,初步设计距离传感器间距并初步优化曲面法矢测量精度:根据|K|X、|K|Y的最大值,根据R≤0.1×|r|min=(10×|K|max)‑1初步设计RY、RX;根据找出测量区域内λKY、λKX的最大值;根据通过优化RY的取值获得αX精度;根据通过优化RX的取值获得αY精度;S3,根据优化结果改变距离传感器间距并进一步优化:根据S2中优化的结果重新设计RY、RX;根据|K|X、|K|Y及新的RY、RX的设计,找出测量区域内λKY、λKX的最大值;根据计算式进一步优化RY、RX的取值;若优化后的RY、RX与前一步优化结果的相差符合要求,则作为最终优化结果;反之,则重复步骤S3,直至取得所需的优化结果。

    手爪
    28.
    发明授权

    公开(公告)号:CN104827484B

    公开(公告)日:2016-08-24

    申请号:CN201510259397.0

    申请日:2015-05-20

    Abstract: 本发明提供了一种手爪,其包括本体、上侧手爪组件、左侧手爪组件和右侧手爪组件。其中,上侧手爪组件包括上侧主体、上侧枢转连接臂、上侧伸缩连杆、上侧X向支承弹簧体以及上侧X向测力支承弹簧体;左侧手爪组件包括:左侧主体、左侧枢转连接臂、左侧伸缩连杆、左侧X向支承弹簧体、左侧Z向支承弹簧体、左侧X向测力支承弹簧体、左侧Y向测力支承弹簧体以及左侧Z向测力支承弹簧体;右侧手爪组件包括右侧主体、右侧伸缩连杆、右侧X向支承弹簧体、右侧Z向支承弹簧体、右侧X向测力支承弹簧体、右侧Y向测力支承弹簧体以及右侧Z向测力支承弹簧体。由此可实现被动柔性同时监控装配过程中工件所受装配力。

    集成化双工位飞行器产品的装配系统

    公开(公告)号:CN104002132B

    公开(公告)日:2016-08-24

    申请号:CN201410248818.5

    申请日:2014-06-06

    Abstract: 本发明提供一种集成化双工位飞行器产品的装配系统,包括:一前段装配单元、一后段装配单元、一龙门式自动制孔机床、一测量分系统及一集成管理与控制系统,其中,所述前段装配单元与后段装配单元为并线布置方式,所述龙门式自动制孔机床可移动的设置于前段装配单元与后段装配单元之间;所述测量分系统用于探测待加工的飞行器产品在前段装配单元及后段装配单元中的安装位姿,并驱动前段装配单元及后段装配单元,实现飞行器产品前段部件及飞行器产品后段部件的精确定位;所述集成管理与控制分系统,对前段装配单元、后段装配单元、龙门式自动制孔机床及测量分系统进行统一管理与控制。

    飞行器产品后段部件移动式定位装置

    公开(公告)号:CN104029149A

    公开(公告)日:2014-09-10

    申请号:CN201410248710.6

    申请日:2014-06-06

    Applicant: 清华大学

    CPC classification number: B25B11/02 B23Q3/00 B64F5/10

    Abstract: 本发明涉及一种飞行器产品后段部件移动式定位装置,其包括:一第一移动式定位装置,该第一移动式定位装置包括第一导轨和第一移动式定位单元;一第二移动式定位装置,该第二移动式定位装置包括第二导轨和第二移动式定位单元;一第三移动式定位装置,该第三移动式定位装置包括第三导轨和第三移动式定位单元;一第四移动式定位装置,该第四移动式定位装置包括第四导轨和第四移动式定位单元;所述第一移动式定位装置和所述第二移动式定位装置在第一方向上相对设置,所述第三移动式定位装置和第四移动式定位装置在第二方向上相对设置,所述第一方向垂直于所述第二方向,且所述第一移动式定位单元、第二移动式定位单元、第三移动式定位单元和第四移动式定位单元分别可以沿各自导轨在所述第二方向移动。

Patent Agency Ranking