基于CNN的多尺度鼻咽肿瘤分割方法

    公开(公告)号:CN109389584A

    公开(公告)日:2019-02-26

    申请号:CN201811083803.2

    申请日:2018-09-17

    Abstract: 本发明涉及一种基于CNN的多尺度鼻咽肿瘤分割方法。包括以下步骤:收集若干例患鼻咽肿瘤的病例,采集其鼻咽部位MRI图像数据;对上一步骤收集的MRI图像数据的病变区域逐层进行人工边缘标注,作为标签数据;对上一步骤得到的标签数据进行标准化预处理并转成二维数据集;构建基于CNN的多层二维卷积神经网络,使用上一步骤中的二维数据集进行训练;对于待分割的鼻咽部位MRI图像数据,采集同部位同样模态的医学图像,对采集的图像进行标准化处理;通过训练得到的网络模型,对待分割的鼻咽部位MRI图像数据进行自动分割。本发明可以实现对于鼻咽肿瘤的自动分割,且与主流网络对比能取得较高的精度。

    基于改进CNN的简单学习框架的图像分类方法

    公开(公告)号:CN109325514A

    公开(公告)日:2019-02-12

    申请号:CN201810872957.3

    申请日:2018-08-02

    Abstract: 本发明涉及一种基于改进CNN的简单学习框架的图像分类方法,其包括:输入图像I;将图像I分为大小为m×m的图像块集合;将图像Ii输入到卷积神经网络中进行训练;通过三层全连接层处理得到一维的矩阵,使用dropout正则化操作以避免过拟合;将神经网络中的输出结果输入到分类器里,输出得到分类结果。本发明提出了一种基于卷积神经网络的简单学习框架,表示为Brief–Net,并将其应用于图像分类,减少了训练的时间同时也提高了分类的精度。Brief–Net包括三个卷积层和最大池化层,接着是三个全连接层。采用softmax分类器来识别图像分类。本发明的方法能够有效减少训练时间和存储成本,具有较高的识别精度。

    基于负值特征的卷积神经网络的自然图像分类方法

    公开(公告)号:CN109284765A

    公开(公告)日:2019-01-29

    申请号:CN201810789885.6

    申请日:2018-07-18

    Abstract: 本发明涉及一种基于负值特征的卷积神经网络的自然图像分类方法,其包括以下步骤:S1输入一张图像I;S2将图像I分为大小为m×m的图像块集合,每一块用Ii(i=1,2,…,n)表示;S3将Ii输入到卷积神经网络中进行训练,其包括:用大小为k×k的卷积核对图像Ii做卷积处理,然后将卷积之后得到的特征取反,再和原来的特征一起作用Leaky ReLU激活函数,再将得到的结果传递到下一层做池化采样;S4经过多次提取特征,最后通过全连接层,得到一维的矩阵;S5将神经网络中的输出结果输入到分类器里,最终得到分类结果。本发明能够增强有效特征的学习,从而提高图像分类的效果,并且对不同的数据有良好的泛化能力。

    一种基于数据结构的异常点检测方法

    公开(公告)号:CN108921202A

    公开(公告)日:2018-11-30

    申请号:CN201810601416.7

    申请日:2018-06-12

    Abstract: 本发明涉及一种基于数据结构的异常点检测方法,其包括:输入数据集;根据数据集构建一棵多维二叉树,利用二叉树搜索算法搜索距离树中每个节点最近的k个邻居;基于一棵多维二叉树构建数据点的数据结构图,结合树中各节点的邻居关系,计算数据点之间的欧氏距离;考虑到数据点之间的相似性和数据点在树中的邻居关系,通过对计算出的欧氏距离进行排序,并设定阈值p自动确定异常点。本发明提高了异常点检测的性能,更好的反应了数据集的结构特征。此外,本发明受数据分布和数据维度影响较弱,在实际应用中适用范围更广,解决了现有技术对特殊点的检测精度和对高维数据检测性能不佳的不足。

    一种基于测地线距离的异常点检测方法

    公开(公告)号:CN108921192A

    公开(公告)日:2018-11-30

    申请号:CN201810517949.7

    申请日:2018-05-25

    Abstract: 本发明涉及一种基于测地线距离的异常点检测方法,其包括:输入数据集X;针对数据集X构建邻接图G,利用Dijkstra算法创建测地距离矩阵;针对各样本点计算测地距离ηi以及各点的度deg(xi);计算平均测地距离设定阈值τ,计算样本点的实际度Rdeg(xi);判断特殊点和异常点。本发明提高了异常点检测的性能,更好的反应了数据集的结构特征,且可同时检测到异常点和边缘点。此外,本发明的方法受数据分布和数据维度影响较弱,在实际应用中适用范围更广,解决了现有技术对异常点的检测精度不高和对高维数据检测性能不佳的缺陷。

    多尺度特征融合的复杂环境下违禁物品检测方法和装置

    公开(公告)号:CN117765378B

    公开(公告)日:2024-04-26

    申请号:CN202410197246.6

    申请日:2024-02-22

    Abstract: 本发明提出一种多尺度特征融合的复杂环境下违禁物品检测方法和装置,通过加强局部特征提取和缓解特征融合的语义冲突来提高对重叠目标和小目标的检测能力,设计多尺度注意力模块主干增强网络对重叠物体的局部特征提取能力,引入挤压激励注意力机制减少目标区域的冗余信息;针对小目标的信息丢失问题,设计自适应融合特征金字塔网络,引入包含细节信息的浅层特征和包含语义信息的深层特征防止小目标信息丢失;采用自适应权重融合策略和通道注意力机制,避免直接融合造成的目标信息丢失。实验结果表明,与现有方法相比,本发明即使在物品遮挡严重、背景复杂的情况下也能准确检测出目标,同时具有更优秀的小目标检测能力。

    基于图卷积神经网络自编码器的交通异常检测方法

    公开(公告)号:CN116776269A

    公开(公告)日:2023-09-19

    申请号:CN202310746435.X

    申请日:2023-06-25

    Abstract: 本发明涉及一种基于图卷积神经网络自编码器的交通异常检测方法,设计一种结合交通异常和深度学习的一维卷积及上下文编码网络,所述网络主要包括镜像时域卷积模块和依次级联的两个图卷积门控循环模块,通过提取交通特征像是速度和流量来预测交通状况和可能发送的异常,在镜像时域卷积模块之前使用了自适应方法来适应不同的路段,通过镜像传入更多的特征给时间卷积模块,通过时间卷积模块获取更多的信息,让网络不断地学习这种交通网络,图卷积门控循环模块使用了高斯核函数模块,让分布更加集中于高维空间,再利用图卷积网络架构的特点捕获了隐藏的空间相关性结合图卷积神经网络捕获可能的异常点发生,更加准确,大大提高了预测异常的可靠性。

    基于多尺度特征金字塔的3D CNN鼻咽癌分割方法

    公开(公告)号:CN109063710B

    公开(公告)日:2022-08-16

    申请号:CN201810907208.X

    申请日:2018-08-09

    Abstract: 本发明涉及图像分割领域中的鼻咽部肿瘤图像分割技术,具体的说是一种基于多尺度特征金字塔的3D CNN鼻咽癌分割方法。针对训练样本,需要由有经验的放射科肿瘤医师对若干鼻咽癌病例进行标注,使用整个三维MRI图像建立数据集,并对数据集进行一定的预处理,然后用网络对训练数据集进行训练,取得高精度的分割模型。对于新的病例,可以用该分割模型分割其MRI图像。相对传统的方法,除了训练阶段需要人工标注外,其余部分均可实现自动处理,大大降低对于有经验医师的需求,且与五种主流网络对比能取得较高的精度。

    一种基于堆叠生成对抗网络的图像补全方法

    公开(公告)号:CN112686822A

    公开(公告)日:2021-04-20

    申请号:CN202011607204.3

    申请日:2020-12-30

    Abstract: 本发明涉及一种基于堆叠生成对抗网络的图像补全方法,网络结构主要由三个堆叠的生成器网络层组成。首先将蒙版图像裁剪成多个图像块,以便网络就可以提取出不同图像块的特征;然后,本发明将补全的多图像块结果放入下一层的生成器中,以进一步补全图像;最后,将不同块的补全结果应用于一整块掩模图像上,得到最终的补全输出。从粗到细的补全作业,充分利用卷积神经网络提取的高层语义信息。并且通过图像块鉴别器来区分生成图像图像和原始图像的真假。实验结果表明,本发明方法能够对具有不规则掩模的图像生成高质量的补全结果,补全的结果更逼近原始图像。

    基于级联卷积的图像分割方法

    公开(公告)号:CN109993735A

    公开(公告)日:2019-07-09

    申请号:CN201910248901.5

    申请日:2019-03-29

    Abstract: 本发明公开了一种基于级联卷积的图像分割方法,涉及图像分割技术领域。该基于级联卷积的图像分割方法包括以下步骤:步骤S1、采集多张病变区域的医学图像信息;步骤S2、将采集到的医学图像信息的病变区域逐层进行人工边缘标注,以得到标签信息;步骤S3、将标签信息进行标准化预处理,以得到二维数据集;步骤S4、建立基于级联卷积的多层二维卷积神经网络,并利用二维数据集对多层二维卷积神经网络进行训练,以得到神经网络模型;步骤S5、输入待分割病人的医学图像信息并进行标准化预处理,以得到待处理二维数据集;步骤S6、将待处理二维数据集输入至所述神经网络模型,将所述待分割病人的医学图像信息进行自动分割,以得到该病人的病变区域。

Patent Agency Ranking