一种基于数据结构的异常点检测方法

    公开(公告)号:CN108921202A

    公开(公告)日:2018-11-30

    申请号:CN201810601416.7

    申请日:2018-06-12

    Abstract: 本发明涉及一种基于数据结构的异常点检测方法,其包括:输入数据集;根据数据集构建一棵多维二叉树,利用二叉树搜索算法搜索距离树中每个节点最近的k个邻居;基于一棵多维二叉树构建数据点的数据结构图,结合树中各节点的邻居关系,计算数据点之间的欧氏距离;考虑到数据点之间的相似性和数据点在树中的邻居关系,通过对计算出的欧氏距离进行排序,并设定阈值p自动确定异常点。本发明提高了异常点检测的性能,更好的反应了数据集的结构特征。此外,本发明受数据分布和数据维度影响较弱,在实际应用中适用范围更广,解决了现有技术对特殊点的检测精度和对高维数据检测性能不佳的不足。

Patent Agency Ranking