-
公开(公告)号:CN105541197A
公开(公告)日:2016-05-04
申请号:CN201510968238.8
申请日:2015-12-21
Applicant: 哈尔滨工业大学
IPC: C04B28/00
CPC classification number: C04B28/006 , C04B14/38 , C04B22/06 , C04B22/062
Abstract: 短切碳化硅纤维增强铝硅酸盐聚合物复合材料的制备方法,本发明涉及复合材料的制备方法。本发明要解决现有铝硅酸盐聚合物材料固有的脆性、低机械强度与韧性,严重限制了其在需要一定承载能力、要求可靠性高的高技术材料领域的广泛应用的问题。方法:一、制备活性铝硅酸盐原材料;二、制备球磨混合物;三、制备碱激发溶液;四、制备铝硅酸盐聚合物料浆;五、固化,即完成短切碳化硅纤维增强铝硅酸盐聚合物复合材料的制备方法。本发明用于短切碳化硅纤维增强铝硅酸盐聚合物复合材料的制备。
-
公开(公告)号:CN103803957A
公开(公告)日:2014-05-21
申请号:CN201410089785.4
申请日:2014-03-12
Applicant: 哈尔滨工业大学
IPC: C04B35/185 , C04B35/622
Abstract: 一种超低热膨胀系数的堇青石陶瓷材料及其制备方法,涉及一种堇青石陶瓷材料及其制备方法。本发明是要解决现有堇青石陶瓷材料制备过程复杂,制备的堇青石陶瓷材料中α型堇青石含量低,弯曲强度低,热膨胀系数高的技术问题。一种超低热膨胀系数的堇青石陶瓷材料由氧化镁粉末、纳米氧化铝粉末和非晶二氧化硅粉末混合制成。制备方法为:一、称量;二、球磨制浆;三、干燥制粉;四、烧结处理,即得堇青石陶瓷材料。本发明的堇青石陶瓷材料的致密度达99.9%,抗弯强度可达到220.5~332.7MPa,介电常数达到4.81~6.75,热膨胀系数为0.5×10-6~1.8×10-6℃-1。本发明应用于堇青石陶瓷材料的制备领域。
-
公开(公告)号:CN103755352A
公开(公告)日:2014-04-30
申请号:CN201410031875.8
申请日:2014-01-23
Applicant: 哈尔滨工业大学
IPC: C04B35/5835 , C04B35/584 , C04B35/622
Abstract: 一种多孔BN/Si3N4复合陶瓷封孔层的制备方法,本发明涉及多孔BN/Si3N4复合陶瓷的表面封孔工艺。本发明要解决现有的多孔BN/Si3N4复合透波陶瓷封孔层材料对整体材料介电性能的影响大,且较难满足高温使用要求的问题。方法:一、按比例称取原料;二、制备封孔浆料;三、采用真空浸渍法制备封孔层;四、进行干燥处理,热处理。本发明所述制备方法工艺简单,封孔层厚度均匀、致密,封孔层由Si3N4和Si2N2O复合陶瓷构成,可以通过控制Si3N4和SiO2比例实现对封孔层物相组成的控制。封孔处理后的多孔BN/Si3N4复合陶瓷可作为承载、透波和热防护材料,用于航空航天、机械工业领域。
-
公开(公告)号:CN103232264A
公开(公告)日:2013-08-07
申请号:CN201310135823.0
申请日:2013-04-18
Applicant: 哈尔滨工业大学
IPC: C04B38/06 , C04B35/584 , C04B35/583
Abstract: 一种具有球形气孔结构的BN/Si3N4复合陶瓷的制备方法,它涉及一种多孔复合陶瓷的制备方法。本发明是要解决现有方法制备的陶瓷材料由于气孔重叠和气孔形状不规整而导致材料的稳定性和可靠性下降的问题,本发明的具体方法为:一、制备混合粉体;二、制备浆料;三、制备干燥后的生坯;四、将干燥后的生坯在空气炉中进行脱脂和脱除造孔剂处理,然后进行烧结,即得到具有球形气孔结构的多孔BN/Si3N4复合陶瓷。本发明适用于航空航天和机械工业领域。
-
公开(公告)号:CN112341207B
公开(公告)日:2022-08-12
申请号:CN202011316393.9
申请日:2020-11-20
Applicant: 哈尔滨工业大学
IPC: C04B35/596 , C04B35/622 , C04B35/626 , C04B38/02
Abstract: 本发明提供了氮化硅‑氧氮化硅柱孔复相陶瓷材料及其制备方法,包括如下步骤:S1、将氮化硅粉和烧结助剂混合均匀,制备陶瓷浆料;将石英纤维分散至絮状,制备石英纤维浆料;将所述陶瓷浆料和所述石英纤维浆料混合均匀,制备复合浆料;S2、将所述复合浆料经过烘干和干压成型后,得到陶瓷生坯;将所述陶瓷生坯经过冷等静压处理后,得到陶瓷坯体;S3、将所述陶瓷坯体经过无压烧结后,得到氮化硅‑氧氮化硅柱孔复相陶瓷材料。本发明中通过以石英纤维为原料制备氮化硅‑氧氮化硅柱孔复相陶瓷材料,解决了多孔氮化硅基陶瓷材料在制备过程中收缩率高和开气孔率较低的问题。
-
公开(公告)号:CN109734453B
公开(公告)日:2021-07-06
申请号:CN201910099421.7
申请日:2019-01-31
Applicant: 哈尔滨工业大学
IPC: C04B35/5835 , C04B35/195 , C04B35/645
Abstract: 本发明公开一种航天防热用氮化硼‑锶长石陶瓷基复合材料及其制备方法,涉及陶瓷基复合材料的制备领域,所述复合材料的制备方法包括:S1:称取锶长石粉体与六方氮化硼粉体进行混合,得到原料粉体;S2:对所述原料粉体进行球磨,得到球磨粉末;S3:对所述球磨粉末进行搅拌烘干,得到原料粉末;S4:对所述原料粉末进行冷压,得到块体原料;S5:对所述块体原料进行热压烧结,得到航天防热用氮化硼‑锶长石陶瓷基复合材料。本发明提供的航天防热用氮化硼‑锶长石陶瓷基复合材料的制备方法,在保证氮化硼‑锶长石陶瓷基复合材料介电性能的前提下,使得制备的氮化硼‑锶长石陶瓷基复合材料具有良好的力学及可加工性能。
-
公开(公告)号:CN109650862B
公开(公告)日:2021-06-25
申请号:CN201910099447.1
申请日:2019-01-31
Applicant: 哈尔滨工业大学
IPC: C04B35/195 , C04B35/622 , C04B35/64
Abstract: 本发明公开一种耐高温氮化硼‑锶长石陶瓷基复合材料及其制备方法,涉及陶瓷基复合材料的制备技术领域,所述制备方法包括:S1:称取锶长石粉体与六方氮化硼粉体进行混合,得到原料;S2:对所述原料进行球磨,得到球磨粉末;S3:对所述球磨粉末进行搅拌烘干,得到原料粉末;S4:将所述原料粉末放入石墨模具中,进行冷压,得到块体原料;S5:对所述块体原料进行放电等离子体烧结,得到耐高温氮化硼‑锶长石陶瓷基复合材料。本发明提供的耐高温氮化硼‑锶长石陶瓷基复合材料的制备方法,通过将氮化硼引入锶长石中,使得制备的氮化硼‑锶长石陶瓷基复合材料不仅具有良好的力学及可加工性能,同时,还具有良好的介电和耐高温性能。
-
公开(公告)号:CN109851375A
公开(公告)日:2019-06-07
申请号:CN201910096687.6
申请日:2019-01-31
Applicant: 哈尔滨工业大学
IPC: C04B35/66 , C04B35/58 , C04B35/626 , C04B35/645 , C04B35/622
Abstract: 本发明提供了一种硅硼碳氮陶瓷复合材料及制备方法,所述硅硼碳氮陶瓷复合材料的制备方法,具体步骤为:将硅粉、石墨粉和六方氮化硼粉混合,并在球磨罐中进行球磨,得到SiBCN非晶粉末;将所述SiBCN非晶粉末与钛增强相粉末混合,并在球磨罐中进行球磨,得到复合粉体;其中,所述钛增强相粉末包括TiB2粉和TiC粉,或,TiB和TiB2混合粉;将所述复合粉体进行热压烧结,得到所述硅硼碳氮陶瓷复合材料。本发明通过采用钛增强相作为增强相用于补强增韧硅硼碳氮陶瓷基体,可以显著提高硅硼碳氮陶瓷复合材料的抗弯强度与断裂韧性。
-
公开(公告)号:CN109650863A
公开(公告)日:2019-04-19
申请号:CN201910099462.6
申请日:2019-01-31
Applicant: 哈尔滨工业大学
IPC: C04B35/195 , C04B35/583 , C04B35/622 , C04B35/645
Abstract: 本发明公开一种氮化硼-锶长石高温透波复相陶瓷材料及其制备方法,涉及陶瓷基复合材料的制备领域,所述氮化硼-锶长石高温透波复相陶瓷材料的制备方法包括:S1:称取锶长石粉体与六方氮化硼粉体进行混合,得到原料粉体;S2:将所述原料粉体进行球磨,得到球磨粉末;S3:将所述球磨粉末进行搅拌烘干,得到原料粉末;S4:将所述原料粉末冷压成型,得到原料坯体;S5:对所述原料坯体进行热等静压烧结,得到氮化硼-锶长石高温透波复相陶瓷材料。本发明提供的氮化硼-锶长石高温透波复相陶瓷材料的制备方法,通过将六方氮化硼引入锶长石中,使得制备的复相陶瓷材料不仅具有良好的可加工性能,还具有良好的介电和耐高温性能。
-
公开(公告)号:CN109650862A
公开(公告)日:2019-04-19
申请号:CN201910099447.1
申请日:2019-01-31
Applicant: 哈尔滨工业大学
IPC: C04B35/195 , C04B35/622 , C04B35/64
Abstract: 本发明公开一种耐高温氮化硼-锶长石陶瓷基复合材料及其制备方法,涉及陶瓷基复合材料的制备技术领域,所述制备方法包括:S1:称取锶长石粉体与六方氮化硼粉体进行混合,得到原料;S2:对所述原料进行球磨,得到球磨粉末;S3:对所述球磨粉末进行搅拌烘干,得到原料粉末;S4:将所述原料粉末放入石墨模具中,进行冷压,得到块体原料;S5:对所述块体原料进行放电等离子体烧结,得到耐高温氮化硼-锶长石陶瓷基复合材料。本发明提供的耐高温氮化硼-锶长石陶瓷基复合材料的制备方法,通过将氮化硼引入锶长石中,使得制备的氮化硼-锶长石陶瓷基复合材料不仅具有良好的力学及可加工性能,同时,还具有良好的介电和耐高温性能。
-
-
-
-
-
-
-
-
-