具有净化功能的有机硅吸附材料的制备方法

    公开(公告)号:CN102658089B

    公开(公告)日:2014-04-09

    申请号:CN201210180840.1

    申请日:2012-06-04

    Abstract: 具有净化功能的有机硅吸附材料的制备方法,它涉及一种吸附材料的制备方法。本发明为了解决现有污水净化中油水分离材料合成方法复杂、分离效率低的技术问题。本方法如下:一、将催化剂溶液滴加到有机硅树脂溶液中,得到有机硅溶胶;二、取有机硅溶胶加入聚合物微球,超声分散后密封,加热后得到湿凝胶,用有机溶剂溶解、浸泡去除聚合物微球,然后用乙醇浸泡10h后倒掉乙醇,干燥,得到具有净化功能的有机硅吸附材料。本发明方法简单,油水分离效率高,本发明的有机硅吸附材料具有丰富的大孔和介孔结构,添加了造孔剂后,形成了大的孔洞,有利于增加吸油量,并且大孔与小孔之间是相互贯通的,这种贯穿的孔结构可使油在孔之间进行渗透。

    多孔碳化硅陶瓷的制备方法

    公开(公告)号:CN102807391B

    公开(公告)日:2013-09-25

    申请号:CN201210312343.2

    申请日:2012-08-29

    Abstract: 多孔碳化硅陶瓷的制备方法,它涉及一种碳化硅陶瓷的制备方法。本发明为了解决现有方法制备的多孔碳化硅陶瓷力学性能低、孔隙率低的技术问题。本方法如下:一、制备浆料;二、制备多孔陶瓷生坯;三、制备预制体;四、制备碳凝胶;五、制备多孔碳化硅与碳凝胶的复合材料;六、制备多孔碳化硅和炭气凝胶的复合材料;七、将多孔碳化硅和炭气凝胶的复合材料与单质硅粉放入烧结炉中烧结,即得多孔碳化硅陶瓷。本发明制备的多孔碳化硅开口孔隙率为30~83%、孔径尺寸为0.3~100m,孔隙可以实现均匀分布或定向排列。通过三点弯曲试验测试,最终制得的孔隙率为47.8%的多孔碳化硅陶瓷材料的抗弯强度达164.62MPa。

    多孔碳化硅陶瓷的制备方法

    公开(公告)号:CN102807391A

    公开(公告)日:2012-12-05

    申请号:CN201210312343.2

    申请日:2012-08-29

    Abstract: 多孔碳化硅陶瓷的制备方法,它涉及一种碳化硅陶瓷的制备方法。本发明为了解决现有方法制备的多孔碳化硅陶瓷力学性能低、孔隙率低的技术问题。本方法如下:一、制备浆料;二、制备多孔陶瓷生坯;三、制备预制体;四、制备碳凝胶;五、制备多孔碳化硅与碳凝胶的复合材料;六、制备多孔碳化硅和炭气凝胶的复合材料;七、将多孔碳化硅和炭气凝胶的复合材料与单质硅粉放入烧结炉中烧结,即得多孔碳化硅陶瓷。本发明制备的多孔碳化硅开口孔隙率为30~83%、孔径尺寸为0.3~100m,孔隙可以实现均匀分布或定向排列。通过三点弯曲试验测试,最终制得的孔隙率为47.8%的多孔碳化硅陶瓷材料的抗弯强度达164.62MPa。

    一种空心玻璃微珠的表面改性及功能化的方法

    公开(公告)号:CN102675924A

    公开(公告)日:2012-09-19

    申请号:CN201210182783.0

    申请日:2012-06-05

    Abstract: 一种空心玻璃微珠的表面改性及功能化的方法,它涉及空心玻璃微珠的改性及功能化方法。本发明要解决现有的空心玻璃微珠表面活性低,功能性差的问题。制备方法:分别制备MPS改性的空心玻璃微珠和苯基三甲氧基硅烷改性的空心玻璃微珠,进一步处理MPS改性的空心玻璃微珠得到中间产物,将苯基三甲氧基硅烷改性的空心玻璃微珠与中间产物加入到浓硫酸中,在30~50℃、搅拌下反应4~10h,得改性空心玻璃微珠;将改性空心玻璃微珠加入Fe3O4悬浮液,搅拌得功能化的空心玻璃微珠。本发明的改性方法改善了空心玻璃微珠与功能纳米颗粒之间的界面相互作用,提高了空心玻璃微珠对功能材料的吸附能力。本发明所得材料用于轻质功能材料领域。

    具有净化功能的有机硅吸附材料的制备方法

    公开(公告)号:CN102658089A

    公开(公告)日:2012-09-12

    申请号:CN201210180840.1

    申请日:2012-06-04

    Abstract: 具有净化功能的有机硅吸附材料的制备方法,它涉及一种吸附材料的制备方法。本发明为了解决现有污水净化中油水分离材料合成方法复杂、分离效率低的技术问题。本方法如下:一、将催化剂溶液滴加到有机硅树脂溶液中,得到有机硅溶胶;二、取有机硅溶胶加入聚合物微球,超声分散后密封,加热后得到湿凝胶,用有机溶剂溶解、浸泡去除聚合物微球,然后用乙醇浸泡10h后倒掉乙醇,干燥,得到具有净化功能的有机硅吸附材料。本发明方法简单,油水分离效率高,本发明的有机硅吸附材料具有丰富的大孔和介孔结构,添加了造孔剂后,形成了大的孔洞,有利于增加吸油量,并且大孔与小孔之间是相互贯通的,这种贯穿的孔结构可使油在孔之间进行渗透。

    β-Si3N4单晶的制备方法
    26.
    发明授权

    公开(公告)号:CN101514494B

    公开(公告)日:2011-09-21

    申请号:CN200910071454.7

    申请日:2009-02-27

    Abstract: β-Si3N4单晶的制备方法,它涉及Si3N4单晶的制备方法。它解决了现有技术中制备β-Si3N4单晶的方法存在产物中混有杂质、β-Si3N4单晶的大小不易控制、使用添加剂造成设备腐蚀、排出的尾气对环境有害和致密材料的制备过程中晶粒会相互碰撞的问题。方法:一、称取α-Si3N4粉末和添加剂,混合后加入聚乙烯醇水溶液,球磨混合得泥浆;二、将泥浆倒入石墨容器中,烘干后得坯体;三、将石墨容器置于高温炉中,气氛烧结得块体;四、将块体破碎,放入熔融的NaOH中,收集沉淀物,然后用水清洗,即得β-Si3N4单晶。本发明中β-Si3N4单晶纯度高,能够实现对β-Si3N4单晶直径及长度的控制,所使用添加剂不会造成设备腐蚀,无尾气产生。

    多孔Si3N4陶瓷的制备方法
    27.
    发明授权

    公开(公告)号:CN101508592B

    公开(公告)日:2011-07-27

    申请号:CN200910071599.7

    申请日:2009-03-20

    Abstract: 多孔Si3N4陶瓷的制备方法,它涉及一种Si3N4陶瓷的制备方法。本发明解决了现有技术制备多孔Si3N4陶瓷气孔率低的问题。本发明的方法如下:将α-Si3N4粉末和助烧剂混合均匀;将上述混合物与聚乙烯醇水溶液制成泥浆;再把泥浆冷冻至完全结冰,然后进行低温真空脱水,冷冻前可根据需要把泥浆成型为各种形状的坯体;对干坯进行烧结,即得多孔Si3N4陶瓷。本发明方法制得的多孔Si3N4陶瓷孔径和气孔率均可调控,气孔率最高可达95%。本发明方法工艺简单、可重复性好。

    一种Sc-α-sialon陶瓷材料的制备方法

    公开(公告)号:CN101274853B

    公开(公告)日:2010-12-08

    申请号:CN200810064549.1

    申请日:2008-05-21

    Abstract: 一种Sc-α-sialon陶瓷材料的制备方法,它涉及一种α-sialon陶瓷材料的制备方法。它解决了现有技术不能获得纯的Sc-α-sialon陶瓷的问题。本发明Sc-α-sialon陶瓷材料的通式为Scm/3Si12-(m+n)Al(m+n)OnN16-n。方法:一、氮化硅、氧化铝、氮化铝和氧化钪经湿混、烘干后得混合粉末;二、将混合粉末装入模具,然后放入放电等离子烧结炉中保温烧结,即得Sc-α-sialon陶瓷材料。本发明获得了纯的Sc-α-sialon陶瓷材料,所得陶瓷材料具有高达19.7GPa的硬度,且有长棒状α-sialon晶粒的形成使得材料韧性好,达4.4MPm1/2。

    负载纳米铟锡氧化物的碳纳米管复合材料的制备方法

    公开(公告)号:CN101792119A

    公开(公告)日:2010-08-04

    申请号:CN201010142014.9

    申请日:2010-04-08

    Abstract: 负载纳米铟锡氧化物的碳纳米管复合材料的制备方法,它涉及碳纳米管复合材料的制备方法。本发明解决了现有的制备负载纳米铟锡氧化物碳纳米管复合材料的方法工艺复杂的问题。本方法:用硝酸铟、氯化锡和乙二醇甲醚制成有机相溶液;用间苯二酚、甲醛、碳酸钠和水制备水相溶液;将有机相溶液滴入水相溶液,得到前驱体溶液;将多孔氧化铝模板浸入到前驱体溶液中,静置;然后烧结,最后用氢氧化钠去掉模板再洗涤、干燥后,即得负载纳米铟锡氧化物的碳纳米管复合材料。本发明工艺简单,可用于氢气敏元件的制备。

    一种具有孔隙率连续梯度的多孔材料及其制备方法

    公开(公告)号:CN107200583B

    公开(公告)日:2019-11-08

    申请号:CN201710382790.8

    申请日:2017-05-26

    Abstract: 本发明提供一种具有孔隙率连续梯度的多孔材料的制备方法,包括以下步骤:(1)将体积分数为50‑70%的粉体原料与体积分数为30‑50%的去离子水混合,然后加入溶胶,球磨得到浆料A;(2)配置与步骤(1)中相同的水溶胶B;(3)每隔一定时间,向浆料A中添加水溶胶B得到混合浆料,维持所述混合浆料中的固相含量在0‑70vol%范围内连续变化,每次添加完水溶胶B后,输入到3D打印机中打印,保持喷嘴处的所述混合浆料固化为凝胶;(4)将形成的凝胶沿梯度方向进行冷冻处理,烧结后形成孔隙率连续梯度的多孔材料。本发明的有益效果在于,工艺简单、稳定性和重复性较好,且通过连续调节浆料固相含量,并结合3D打印,形成固含量连续梯度变化的凝胶。

Patent Agency Ranking