一种微型倒装芯片的转移方法

    公开(公告)号:CN115274942A

    公开(公告)日:2022-11-01

    申请号:CN202210922999.X

    申请日:2022-08-02

    Abstract: 本发明提供一种微型倒装芯片的转移方法,包括:提供驱动基板和临时基板,临时基板的一侧表面粘接有若干微型倒装芯片;在微型倒装芯片的第二电连接件背离临时基板的一侧表面形成第一键合件,第一键合件的材料为导电胶;将若干微型倒装芯片转移至驱动基板上,且第一键合件连接微型倒装芯片的第二电连接件与驱动基板的第一电连接件;对若干微型倒装芯片进行检测,确定不良芯片在驱动基板上的坏点位置;激光照射位于坏点位置的第一键合件,移除不良芯片。上述方法不仅能够保证微型倒装芯片与驱动基板的稳定键合,还能在避免第一电连接件受到激光辐照的损伤,使原键合焊点可继续使用,且具有较高的不良芯片去除效率。

    基于三维成像的微小尺寸LED芯片的测试系统及其测试方法

    公开(公告)号:CN114383821A

    公开(公告)日:2022-04-22

    申请号:CN202111665174.6

    申请日:2021-12-30

    Applicant: 厦门大学

    Abstract: 本发明提出了基于三维成像的微小尺寸LED芯片测试系统,其构成包括压电驱控六轴探针台、马达驱控器、支架、底座、显微相机、信号采集器、光纤光谱仪、积分球、载物台、数显加热台、数字源表和计算机;本发明压电驱控六轴台以小步进发生位移,同步结合三维显微成像实现探针与芯片的精准定位,所述三维成像包括正面和截面显微成像,根据观测到的成像可以对探针与芯片的局部接触进行全方位控制;微芯片阵列在不同工作区间的整体出射光强度、光谱分布信息及电学特性,可通过数字源表光纤光谱仪、积分球、载物台、数显加热台、数字源表和计算机等测量组件获得,特别是运用机器视觉对图像的深度处理,有效实现了对高密度微LED阵列中单元器件发光均匀性的快速识辨及分析。

    交流驱动的LED器件及其制备方法
    23.
    发明公开

    公开(公告)号:CN119153602A

    公开(公告)日:2024-12-17

    申请号:CN202411259249.4

    申请日:2024-09-09

    Abstract: 本发明涉及交流驱动的LED器件及其制备方法。交流驱动的LED器件包括:衬底层;第一半导体层,位于衬底层表面,第一半导体层包括平面部分和凸起部分,凸起部位于平面部分背向衬底层一侧的表面;有源层,位于第一半导体层的凸起部分背向衬底层一侧的表面;第二半导体层,位于有源层背向第一半导体层一侧的表面,第二半导体层与第一半导体层的导电类型相反;第一半导体层的凸起部分、有源层和第二半导体层构成LED器件的外延层;钝化层,位于第二半导体层背向有源层一侧的表面,且包覆外延层的侧部;侧部电极,位于钝化层背向外延层侧部的表面。本发明提供的交流驱动的LED器件能有效降低器件在交流驱动下的开启电压,同时提高注入电流,提高器件发光亮度。

    一种实时原位的荧光成像显微镜测试系统及方法

    公开(公告)号:CN116642863A

    公开(公告)日:2023-08-25

    申请号:CN202310359980.3

    申请日:2023-04-06

    Abstract: 本发明公开了一种实时原位的荧光成像显微镜测试系统及方法,该系统包括:测试电源模块、激发光模块、接收光路模块、信号探测模块以及微控制器,通过各个模块的配合,能够在不损害待测样品的条件下,原位、实时观测待测样品中的多物理场调控下,缺陷迁移以及相关的宏观光电性能数据,与其他离子迁移测试系统相比,该荧光成像显微镜测试系统操作更加简便,能以高分辨率快速捕获宽视场中的荧光成像图像,测试结果更加准确形象,能够原位、实时地获得多物理场调控下的离子迁移图像以及相关光电测试数据,通过微观图像与宏观数据相结合,更加全面地对器件的性能衰退过程和离子迁移进行分析。

    一种太阳能电池结构性能的预测方法

    公开(公告)号:CN113919576A

    公开(公告)日:2022-01-11

    申请号:CN202111203503.5

    申请日:2021-10-15

    Abstract: 本发明涉及太阳能电池技术领域,提供一种太阳能结构性能的预测方法,主要是通过对太阳能电池结构的输入特征参数及对应的输出特征参数进行收集、提取,并建立相应的数据集及依据已知的准则对数据集中的数据进行预处理;利用机器学习算法搭建模型,并对此模型进行结构参数设定及初始化训练;运用经预处理后的前述数据集对经结构参数初始化训练后的模型进行训练优化,进而得到预测模型;将待预测的太阳能电池结构的输入特征参数的测试数据输入该预测模型,进而获得该待预测的太阳能电池结构的输出特征参数的预测值。藉此,可以对太阳能电池结构的性能进行快速预测,操作简便,准确性高。

    一种基于局域表面等离激元耦合增强的MIS结构的超快micro-LED及其制备方法

    公开(公告)号:CN113471340A

    公开(公告)日:2021-10-01

    申请号:CN202110570218.0

    申请日:2021-05-25

    Applicant: 厦门大学

    Abstract: 本发明涉及光电半导体领域,特别涉及一种基于局域表面等离激元耦合增强的MIS结构的超快micro‑LED及其制备方法。所述micro‑LED自下而上依次包括衬底、缓冲层、氮化镓层、p型有源层、绝缘层、电流扩展层以及金属纳米颗粒结构;金属纳米颗粒结构表面设有延伸至p型有源层表面的开口,以使p型有源层表面形成外露区域,外露区域表面设有p型欧姆接触电极,金属纳米颗粒结构的表面设有n型欧姆接触电极。本发明提供的micro‑LED能够有效提高器件的载流子复合速率和复合效率,且有效载流子寿命减小,使该器件的调制带宽大大增加,这将扩展该micro‑LED在光通信中的应用。

    一种氮化镓器件形成方法及氮化镓器件

    公开(公告)号:CN119789623A

    公开(公告)日:2025-04-08

    申请号:CN202411969264.8

    申请日:2024-12-30

    Abstract: 本发明涉及半导体制造技术领域,具体涉及一种氮化镓器件形成方法及氮化镓器件。本发明提供的氮化镓器件的形成方法,包括以下步骤:提供待刻蚀基体;待刻蚀基体至少包括层叠设置的:衬底层、第一导电类型氮化镓层、量子阱层和第二导电类型氮化镓层;干法刻蚀待刻蚀基体;在刻蚀气体环境下,通过电感耦合等离子刻蚀,在待刻蚀基体形成刻蚀槽,使待刻蚀基体形成初步刻蚀器件;其中化学腐蚀与物理轰击共同作用;损伤修复;在修复气体环境下,通过电感耦合等离子刻蚀,使初步刻蚀器件形成目标刻蚀器件。其中化学腐蚀起主导作用。本发明可以解决干法刻蚀氮化镓器件会对产品结构侧壁造成损伤,加重侧壁缺陷,导致非辐射复合几率变大的问题。

    一种显示面板及其制备方法

    公开(公告)号:CN115249725B

    公开(公告)日:2025-03-25

    申请号:CN202211043484.9

    申请日:2022-08-29

    Abstract: 本发明提供一种显示面板及其制备方法,制备方法包括:提供第一基板,第一基板的一侧有若干间隔的Mi cro‑LED芯片;提供第二基板,第二基板的一侧表面有若干导电层;在第二基板上形成隔离层,隔离层中有若干开口组,每个开口组均包括暴露出导电层的表面的第一开口和第二开口,第一开口的宽度小于P型电极的宽度,第二开口的宽度小于N型电极的宽度;在第一开口中形成第一键合层,在第二开口中形成第二键合层;以隔离层对芯片本体支撑将P型电极与第一键合层进行键合的同时将N型电极与第二键合层进行键合,P型电极嵌入第一键合层中,N型电极嵌入第二键合层中。所述方法避免M i cro‑LED芯片与第一键合层、第二键合层之间键合失效。

    梯度带隙光电二极管探测器及其制备方法、重构光谱仪

    公开(公告)号:CN119421622A

    公开(公告)日:2025-02-11

    申请号:CN202411535317.5

    申请日:2024-10-30

    Abstract: 本发明涉及光电探测技术领域,公开了梯度带隙光电二极管探测器及其制备方法、重构光谱仪。制备方法包括:提供衬底;在衬底的一侧表面形成导电层;在衬底上形成第一载流子传输层;在第一载流子传输层上形成初始半导体光敏层;将衬底沿第一预设方向浸入到反应溶液中;从反应溶液中提拉出衬底,形成梯度带隙半导体光敏层;在梯度带隙半导体光敏层上形成第二载流子传输层;在第二载流子传输层上形成阵列排布的多个第一电极结构,在衬底上形成与导电层连接的第二电极结构。本发明的梯度带隙半导体光敏层与阵列的第一电极结构构成了光电二极管阵列光电探测器阵列,具有不同的光谱响应和宽动态响应范围,提高光谱重构算法线性求解准确性和光谱分辨率。

    一种发光器件及制备方法
    30.
    发明公开

    公开(公告)号:CN118919624A

    公开(公告)日:2024-11-08

    申请号:CN202410977433.6

    申请日:2024-07-19

    Abstract: 本发明涉及半导体光电器件技术领域,公开了一种发光器件及制备方法,该发光器件包括衬底层、缓冲层、多孔化结构及发光结构层,缓冲层位于衬底层一侧表面,缓冲层上具有目标区域;多孔化结构嵌于目标区域内,多孔化结构包括氮化镓柱,且氮化镓柱具有纳米孔;发光结构层位于氮化镓柱背离衬底层的一侧表面,发光结构层包括第一掺杂半导体层、发光层及第二掺杂半导体层,第一掺杂半导体层位于氮化镓柱背离衬底层的一侧表面,发光层位于第一掺杂半导体层和第二掺杂半导体层之间,第一掺杂半导体层的导电类型和第二掺杂半导体层的导电类型相反。本发明减少了大面积多孔化造成的孔径不均匀的情况,进而减少了应力弛豫程度不均匀的情况。

Patent Agency Ranking