一种基于深度学习的快速停车位检测方法

    公开(公告)号:CN110210350A

    公开(公告)日:2019-09-06

    申请号:CN201910429977.8

    申请日:2019-05-22

    Abstract: 本发明涉及一种基于深度学习的快速停车位检测方法,属于驾驶技术领域,用于解决停车位检测环境适应性差、模型计算量大问题,方法包括离线步骤:离线采集包含有停车位的图像数据,建立训练、验证数据集;进行神经网络模型的训练、评价和优化;所述神经网络模型用于对图像数据中停车位边线进行语义分割;在线步骤:在线采集包含有停车位的图像数据,使用训练好的神经网络模型进行停车位边线语义分割得到停车位边线掩膜,对得到的边线掩膜进行拟合、聚类与组合,得到由边线组成的几何形状;根据设定的形状判别条件,对所述几何形状进行筛选确定停车位。本发明具环境适应性强;采用模型体积很小,计算量低,对计算资源的需求较小;系统造价低,具有大规模应用的潜力。

    一种目标点云分割方法
    23.
    发明公开

    公开(公告)号:CN110033457A

    公开(公告)日:2019-07-19

    申请号:CN201910180734.5

    申请日:2019-03-11

    Abstract: 本发明涉及一种目标点云分割方法,属于目标分割技术领域,解决了现有激光雷达分割方法存在的计算量大、计算速度慢、分割不精确的问题。包括以下步骤:步骤S1:接收并处理激光雷达采集的激光雷达点云数据,得到所述激光雷达点云数据对应的深度图;步骤S2:识别深度图角度矩阵中的地面信息,并将深度图中的相应坐标的R值置为-1,得到去除地面信息的深度图;步骤S3:对去除地面信息的深度图进行目标分割,得到目标分割结果。实现了目标点云的快速分割,计算量小、计算结果精确,可以满足车辆运动时的实时目标分割需求。

    一种智能驾驶车辆加速度跟踪控制系统

    公开(公告)号:CN108749809A

    公开(公告)日:2018-11-06

    申请号:CN201810533293.8

    申请日:2018-05-29

    Abstract: 本发明涉及一种智能驾驶车辆加速度跟踪控制系统,属于智能车辆控制技术领域,解决了现有技术中无法实现对智能驾驶车辆加速度精确跟踪的问题。上位机模块,用于根据加速度补偿量Δa计算预估行驶阻力Fd,并根据Fd计算得到发动机控制量和制动控制量;纵向控制器模块,用于根据所述发动机控制量和制动控制量,生成发动机控制指令、制动控制指令;电控驱动模块,用于接收并执行所述发动机控制指令;电控制动模块,用于接收并执行所述制动控制指令。车载传感器模块,用于采集智能驾驶车辆的当前车速信息和历史车速信息发送至上位机模块,由上位机模块计算得到加速度补偿量Δa。实现了智能驾驶车辆加速度的精确跟踪。

    一种基于深度学习的快速停车位检测方法

    公开(公告)号:CN110210350B

    公开(公告)日:2021-12-21

    申请号:CN201910429977.8

    申请日:2019-05-22

    Abstract: 本发明涉及一种基于深度学习的快速停车位检测方法,属于驾驶技术领域,用于解决停车位检测环境适应性差、模型计算量大问题,方法包括离线步骤:离线采集包含有停车位的图像数据,建立训练、验证数据集;进行神经网络模型的训练、评价和优化;所述神经网络模型用于对图像数据中停车位边线进行语义分割;在线步骤:在线采集包含有停车位的图像数据,使用训练好的神经网络模型进行停车位边线语义分割得到停车位边线掩膜,对得到的边线掩膜进行拟合、聚类与组合,得到由边线组成的几何形状;根据设定的形状判别条件,对所述几何形状进行筛选确定停车位。本发明具环境适应性强;采用模型体积很小,计算量低,对计算资源的需求较小;系统造价低,具有大规模应用的潜力。

    一种激光雷达SLAM算法与惯导融合定位的方法

    公开(公告)号:CN112923933A

    公开(公告)日:2021-06-08

    申请号:CN201911246424.5

    申请日:2019-12-06

    Abstract: 本发明率先提出一种基于特征概率栅格地图的激光雷达SLAM算法‑CPFG(Closet Probability and Feature Grid,最近邻概率特征栅格)算法。该算法利用三维激光雷达数据,实时创建和更新线、面及高斯分布特征以及占据概率的栅格地图,并结合鲁棒化后的马氏距离作为优化函数进行实时位姿估计,该算法主要分为三步:点云预处理,点云与特征概率栅格地图的匹配及位姿估计,特征概率栅格地图的更新。本发明的激光雷达SLAM算法与目前几个主流算法相比,在实时性和定位精度方面有更好的表现。然后本发明融合了惯导的姿态信息,将激光雷达SLAM的高位移精度与惯导低姿态漂移的特性相结合,其相对定位精度可以达到千分之一左右,在无人驾驶定位领域具有广泛的使用前景。

Patent Agency Ranking