-
公开(公告)号:CN108106630A
公开(公告)日:2018-06-01
申请号:CN201711291544.8
申请日:2017-12-08
Applicant: 北京理工大学
CPC classification number: G01C22/006 , G01C21/16
Abstract: 本发明提供了一种行人导航的二维人体里程计及里程计算方法,解决行人在完成非常规步态下定位精度差的问题,能够得到行人精确的行进距离,实现高精度定位。本发明所述的二维人体里程计及方法,基于惯性导航解算与人体步态特征,对步态进行精确划分,针对每一种步态建立参考步长,并在参考步长基础上增加修正因子得到刻度因子,利用刻度因子作为人体行进的刻度标识,利用刻度因子实现精确的单步步长估计,解决行人在完成非约束、非等间隔或非平稳的非常规步态下定位精度差的问题,并结合步频信息得到精确的行进距离,提高定位精度。
-
公开(公告)号:CN107883940A
公开(公告)日:2018-04-06
申请号:CN201711042119.5
申请日:2017-10-31
Abstract: 本发明公开了一种制导炮弹用高动态姿态测量方法。使用本发明能够有效、准确地测量高过载、高旋转制导炮弹的姿态信息。本发明在炮弹上安装由三个高过载角速率陀螺构成的IMU和三轴磁阻传感器;炮弹出炮口后,首先采用三轴磁阻传感器输出信号频率的平均值作为当前的炮弹滚转角速率;当磁阻传感器测量得到的炮弹滚转角速率小于或等于10转/秒时,以IMU测量得到的炮弹滚转角速率为基础,采用磁阻传感器得到的滚转角速率对IMU获得的滚转角速率进行校正,以校正后的滚转角速率作为当前的炮弹滚转角速率,然后利用当前的炮弹滚转角速率、IMU测量得到的炮弹俯仰角速率和炮弹偏航角速率,结合捷联惯导姿态算法,得到当前的炮弹姿态。
-
公开(公告)号:CN104202019B
公开(公告)日:2017-05-10
申请号:CN201410423093.9
申请日:2014-08-25
Applicant: 北京理工大学
IPC: H03H21/00
Abstract: 本发明提供了针对离散时间时不变系统的一种基于递推协方差矩阵估计方法的卡尔曼滤波方法,目的是要解决一类离散时间线性时不变系统中观测噪声协方差矩阵完全未知的情况下的系统状态滤波估计问题。步骤一、利用观测序列{yk}构建新统计序列{ξk};步骤二、计算{ξk}的协方差矩阵递推公式:步骤三、利用观测噪声协方差矩阵与新统计序列协方差矩阵实时估计值Covk(ξ)之间的代数关系,计算过程噪声协方差矩阵估计序列;步骤四、通过f(Q)和过程噪声协方差矩阵Q的关系,计算出协方差矩阵的估计序列步骤五、将过程噪声的协方差矩阵估计序列替代真值代入标准卡尔曼滤波方法中,计算系统实时的状态估计以及状态估计偏差的协方差矩阵。
-
公开(公告)号:CN105910603A
公开(公告)日:2016-08-31
申请号:CN201610245570.6
申请日:2016-04-20
Applicant: 北京理工大学
Abstract: 本发明提供一种通信延迟下的多AUV协同导航滤波方法,包括如下步骤:步骤一、对tk时刻从AUV状态Xk扩维为Μk;步骤二、计算扩维后tk时刻从AUV状态Μk的一步预测及一步预测的误差方差;步骤三、计算扩维后tk时刻从AUV距离量测的一步预测、一步预测的协方差及一步预测互协方差;步骤四、将步骤二和三所计算的参量带入卡尔曼滤波理论,获取tk时刻待估计的状态和状态估计误差方差实现多AUV协同导航滤波。该方法根据AUV间的通信时延,对从AUV的状态进行扩维,利用扩维后的状态估计来对延迟的量测进行预测,以解决传统滤波算法(EKF)由于通信延迟所造成的定位失效问题。
-
公开(公告)号:CN103684350B
公开(公告)日:2016-07-13
申请号:CN201310645786.8
申请日:2013-12-04
Applicant: 北京理工大学
IPC: H03H21/00
Abstract: 本发明提供一种粒子滤波方法,其包括:步骤1,初始化粒子;步骤2,在k时刻获取测量值,然后利用粒子滤波方法由N个粒子滤波过程并行计算均值和方差,然后进行近似处理获得重要性密度函数并抽取采样粒子;步骤3,根据步骤2获得的重要性密度函数,计算每一个采样粒子的重要性权值;步骤4,将步骤3中得到的重要性权值进行归一化处理;步骤5,根据步骤4中归一化处理后得到的权值进行重采样,得到新的粒子序列;步骤6,对步骤5得到的新的粒子序列xik计算后验概率密度,输出滤波结果。本发明的计算过程简单,能在一定程度上改善粒子退化问题,提高了粒子滤波性能。
-
公开(公告)号:CN104866669A
公开(公告)日:2015-08-26
申请号:CN201510272159.3
申请日:2015-05-25
Applicant: 北京理工大学
Abstract: 本发明提供一种分析惯性导航系统可观测性的方法,具体过程为:步骤一,建立惯性导航系统的系统模型,所述系统模型包括误差模型和观测方程;步骤二,对系统模型进行离散化处理,利用离散化后的系统模型构建可观测矩阵;步骤三,通过对可观测矩阵进行变换和求解,计算出系统全部状态的可观测度;步骤四,根据所述可观测度,分析出系统每一个状态的可观测性,进一步可以反应出该状态的Kalman滤波结果是否准确。该方法着重考虑的是每一个状态的可观测度,单一状态的可观测度能够比整个系统的可观测度更加准确而详细的描述系统的可观测性,并且解决了以往的可观测度分析方法无法求解单一状态的可观测度的问题。
-
公开(公告)号:CN103411479B
公开(公告)日:2015-07-01
申请号:CN201310330430.5
申请日:2013-08-01
Applicant: 北京理工大学
IPC: F41G5/24
CPC classification number: F41G5/24 , G05B13/023
Abstract: 本发明提出一种基于滑模和自抗扰技术的坦克炮控系统的复合控制方法,可以提高坦克炮控系统的动态射击性能和稳定性。首先建立坦克火炮高低向稳定器控制模型;然后再根据该控制模型,设计滑模变结构切换函数及其控制律;并且根据该控制模型,设计自抗扰控制器;最后根据所述的切换函数和控制律以及所述的自抗扰控制器,设计坦克炮控系统的复合控制器。所述的自抗扰控制器包括跟踪微分器、扩张状态观测器和非线性反馈控制律。
-
公开(公告)号:CN102914318B
公开(公告)日:2015-03-25
申请号:CN201110439180.X
申请日:2011-12-23
Applicant: 北京理工大学
IPC: G01C25/00
Abstract: 本发明涉及一种实现非完全自由度惯性平台的在线自检测的方法,适用于各类非完全和完全自由度的惯性平台系统自检测,属于参数在线自主检测技术领域。在不借助外加其他设备和不拆下平台系统的前提下,利用平台处于不同姿态时加速度计和陀螺的输出并结合加速度计和陀螺的输出模型,运用最小二乘法对平台的关键参数进行实时自检测,计算速度十分迅速。因此,在实时性要求较高系统中,采用本发明方法能够快速地进行平台关键参数的自主检测。与传统方法相比,本发明方法不仅省去了惯性平台系统拆装的不便,而且能够提供实时的系统检测数据,为惯性平台系统的稳定工作提供了更有利的保障。
-
公开(公告)号:CN102564452B
公开(公告)日:2014-12-10
申请号:CN201110409988.3
申请日:2011-12-09
Applicant: 北京理工大学
Abstract: 本发明属于自主标定领域,为了解决双轴旋转调制惯性导航系统中系统横滚轴与水平面夹角无法消除的问题,本发明提供了一种基于惯性导航系统的在线自主标定方法,该方法通过步骤二中陀螺的常值漂移和刻度因数以及步骤三中加表的零偏和刻度因数的求取,从而实现了惯性导航系统的在线自主标定。解决了双轴旋转调制惯性导航系统中系统横滚轴与水平面夹角无法消除的问题,为其姿态角的预先估计提供了可靠依据,实现了在线自主标定的目的。
-
公开(公告)号:CN102982211B
公开(公告)日:2014-09-10
申请号:CN201210509900.X
申请日:2012-12-04
IPC: G06F17/50
Abstract: 一种钟形振子式角速率陀螺控制回路仿真方法,该方法包括下列步骤:(1)分析钟形振子式角速率陀螺的振动机理,确定状态变量,建立状态空间模型;(2)确定状态空间模型参数和仿真参数;(3)设计控制回路,搭建控制回路仿真框图;(4)观察仿真效果,调节设计参数,使其达到理想效果。本发明采用仿真方法取代传统的经验判断和参数试凑法,提高了验证分析的能力和准确性,大大缩短了钟形振子的设计周期,从而缩短了整个钟形振子式角速率陀螺开发的时间,为钟形振子式角速率陀螺的合理设计提供了依据。
-
-
-
-
-
-
-
-
-