-
公开(公告)号:CN104058104B
公开(公告)日:2015-12-30
申请号:CN201410240398.6
申请日:2014-05-30
Applicant: 北京控制工程研究所
IPC: B64G1/26
Abstract: 无加速度计情况下一种基于关调制的高精度轨控方法,通过对姿态喷气相平面控制律的输入姿态进行积分修正,将轨控期间相平面姿态控制的平均结果校正到期望标称姿态附近;在航天器没有配置加速度计的情况下,通过定义关调制轨控时间增量因子,在理想关机时刻之后增加轨控时间,将因关调制而损失的轨控量进行准确补充。针对采用姿控发动机实现轨控且无加速度计配置的航天器,联合运用上述积分修正及关调制轨控时间增量因子修正策略,可提高实际轨控推力方向的精度,并保证轨控速度增量大小的精度,综合达成高精度的轨控效果。
-
公开(公告)号:CN102878997A
公开(公告)日:2013-01-16
申请号:CN201210409156.6
申请日:2012-10-24
Applicant: 北京控制工程研究所
IPC: G01C21/20
Abstract: 一种大偏心率轨道的星上快速高精度外推方法,火星探测器任务轨道为大偏心率(e>0.6)椭圆轨道,采用数值积分方法,要做到较高精度的轨道计算,需要考虑较高阶次的火星形状摄动以及其他各种摄动因素影响,从而导致计算量较大,若星上计算机复位或切机,数值积分方法将会中断;解析法只适用于偏心率较小(e<0.6)的椭圆轨道;利用精密轨道提供的探测器位置拟合切比雪夫多项式系数,将会带来较大的拟合误差。本发明通过引入精密轨道与二体轨道的位置差,利用位置差拟合切比雪夫多项式系数,可以很好地解决大偏心率椭圆轨道的星上轨道计算问题,计算量小,且精度高。
-
公开(公告)号:CN119305756B
公开(公告)日:2025-02-25
申请号:CN202411854517.7
申请日:2024-12-17
Applicant: 北京控制工程研究所
Abstract: 本发明公开了一种容错型动量轮系控制方法及装置,属于卫星姿态控制领域。方法包括:基于卫星平台的包络能力,确定满足所述包络能力的动量轮配置方案和构型方案;若确定大角动量动量轮系中存在失效角动量轮,则利用剩余角动量轮的目标角动量前馈补偿载荷平台旋转角动量以形成整星零动量,利用大力矩动量轮系补偿大角动量动量轮系产生的非旋转轴角动量;若确定大力矩动量轮系中存在失效力矩轮,则针对大角动量动量轮系建立新的目标角动量,大力矩动量轮系吸收大角动量动量轮系的转速控制引起的角动量变化,以实现整星零动量控制。本发明能够在一种轮系内出现失效轮时,利用另一种轮系对失效轮造成的干扰进行补偿,从而实现整星姿态的平稳过渡。
-
公开(公告)号:CN119305756A
公开(公告)日:2025-01-14
申请号:CN202411854517.7
申请日:2024-12-17
Applicant: 北京控制工程研究所
Abstract: 本发明公开了一种容错型动量轮系控制方法及装置,属于卫星姿态控制领域。方法包括:基于卫星平台的包络能力,确定满足所述包络能力的动量轮配置方案和构型方案;若确定大角动量动量轮系中存在失效角动量轮,则利用剩余角动量轮的目标角动量前馈补偿载荷平台旋转角动量以形成整星零动量,利用大力矩动量轮系补偿大角动量动量轮系产生的非旋转轴角动量;若确定大力矩动量轮系中存在失效力矩轮,则针对大角动量动量轮系建立新的目标角动量,大力矩动量轮系吸收大角动量动量轮系的转速控制引起的角动量变化,以实现整星零动量控制。本发明能够在一种轮系内出现失效轮时,利用另一种轮系对失效轮造成的干扰进行补偿,从而实现整星姿态的平稳过渡。
-
公开(公告)号:CN115479605B
公开(公告)日:2024-11-05
申请号:CN202211018029.3
申请日:2022-08-24
Applicant: 北京控制工程研究所
Abstract: 一种基于空间目标定向观测的高空长航时无人机自主导航方法,在高空长航时无人机上配置定向观测星相机和惯性测量单元,通过定向观测星相机获取地球轨道上星历已知空间目标和背景恒星测量信息,通过处理空间目标和背景恒星观测数据,计算得到空间目标在惯性坐标系中的视线方向;同时,采取类似星敏感器的处理方式,以天球上的恒星为基准确定载体姿态;进而,结合惯性测量单元进行载体运动状态外推计算,通过扩展卡尔曼滤波器,处理一个时间序列上的空间目标和恒星视线方向观测量,对惯性测量单元进行修正,获得无人机的位置、速度和姿态的估计值。本发明可为高空长航时无人机自主导航开辟一条新的途径,在未来信息化战场上具有较高的应用价值。
-
公开(公告)号:CN105136150B
公开(公告)日:2018-01-05
申请号:CN201510509071.9
申请日:2015-08-18
Applicant: 北京控制工程研究所
IPC: G01C21/24
Abstract: 一种基于多次星敏感器测量信息融合的姿态确定方法,适用于具有高精度姿态确定要求的航天器进行姿态确定,其中星敏感器的姿态输出频率需大于航天器的姿态确定周期。与传统直接利用星敏感器进行姿态测量输出不同,本发明方法在一个姿态确定周期内获得多次星敏感器测量结果后,按照权重进行星敏感器测量结果的数据融合,权重系数的取值与星敏感器测量时刻至当前姿态确定时刻的星时之差相关,使得本发明方法能够在进行数据融合时进行融合结果的优化,满足航天器应用对姿态确定所提出的高精度需求。
-
公开(公告)号:CN104063582A
公开(公告)日:2014-09-24
申请号:CN201410240403.3
申请日:2014-05-30
Applicant: 北京控制工程研究所
Abstract: 一种面外面内分步实施的绕飞构型建立方法,指定主控航天器相对于目标航天器轨道面外运动幅值出现在特定地心纬度点上空,建立起主控航天器相对于目标航天器的面外相对运动;对面外相对运动采用CW制导策略进行微调,使面外相对运动幅值更加接近于标称值;基于指定的期望绕飞构型的面外、面内相对运动相位差,给出面内相对运动转移脉冲,最终建立起相应的绕飞构型。本发明指出,在面外面内相对运动相位差、绕飞面仰角与绕飞面方位角三个参数之间存在一个简洁的关系式。本发明适用于绕飞相对运动尺度为数百米到数十公里量级的情况,绕飞构型可任意设定,绕飞面仰角、方位角及基线长度等特征指标的实现精度高。
-
公开(公告)号:CN102175260B
公开(公告)日:2012-11-14
申请号:CN201010623851.3
申请日:2010-12-31
Applicant: 北京控制工程研究所
IPC: G01C25/00
Abstract: 一种自主导航系统误差校正方法,基于紫外地球敏感器和星敏感器的自主导航系统中,采用紫外敏感器测量得到卫星本体系中地心矢量,采用星敏感器测量得到惯性系到卫星本体系的姿态转换矩阵。由于敏感器不可避免存在相对安装误差,滤波器无法消除该项系统误差,导致导航精度变差。本发明方法对紫外敏感器和星敏感器的相对安装误差进行了建模,将安装误差扩充为状态变量进行导航滤波。假定卫星一段时间内能通过GPS接收机或地面定轨获得高精度位置测量信息,则通过滤波可以对系统误差进行实时估计和校正。本发明方法操作简单,可以显著提高导航精度。
-
公开(公告)号:CN102175259B
公开(公告)日:2012-11-14
申请号:CN201010623842.4
申请日:2010-12-31
Applicant: 北京控制工程研究所
IPC: G01C25/00
Abstract: 基于地日月一体化敏感器的自主导航仿真试验系统,地日月一体化敏感器安装在第二单轴转台上,获取地球、太阳和月亮测量信号并送到导航计算机。第一单轴转台带动地球模拟器、第二单轴转台、地日月一体化敏感器以卫星轨道速度转动模拟卫星自转运动。第二单轴转台带动地日月一体化敏感器转动,模拟星体滚动姿态。姿态轨道仿真器进行卫星姿态轨道计算,将卫星基准轨道姿态数据发送到控制计算机。控制计算机根据基准姿态轨道数据生成轨道角速度指令驱动第一单轴转台,生成弦宽指令控制地球模拟器的弦宽,生成滚动角指令驱动第二单轴转台转动。导航计算机根据测量信号进行导航滤波计算,得到卫星位置估计值和速度估计值,与基准数据比对后得到导航精度。
-
公开(公告)号:CN102538784A
公开(公告)日:2012-07-04
申请号:CN201110442045.0
申请日:2011-12-23
Applicant: 北京控制工程研究所
Abstract: 一种基于日地月方位信息的自主导航系统的地心方位的扁率修正方法,首先不考虑地球扁率影响,利用球面几何关系计算出地心方位和地心距。然后考虑地球扁率,建立地球敏感器扫描地平边缘时满足的几何约束方程,并结合大致的地心方位和地心距,反解出考虑扁率效应的地心方位信息。本发明在对考虑地球扁率的地心方向确定进行研究的基础上,提出了一种考虑地球扁率的地心方向确定方法,大大提高了基于日地月测量信息的自主导航系统的导航精度。
-
-
-
-
-
-
-
-
-