一种利用石墨烯阻挡层制备氮化物垂直结构LED的方法

    公开(公告)号:CN110323308B

    公开(公告)日:2020-09-08

    申请号:CN201910491149.7

    申请日:2019-06-06

    Applicant: 北京大学

    Abstract: 本发明公开了一种利用石墨烯阻挡层制备氮化物垂直结构LED的方法。本发明通过在单晶金属衬底上表面引入高晶体质量的、具有六方晶体结构对称性的石墨烯阻挡层,利用石墨烯阻挡层的层内强共价键阻挡单晶金属衬底与氮化物LED的界面反应和金属原子的扩散,利用石墨烯阻挡层的层间弱分子力结合弛豫金属衬底和氮化物LED结构的晶格失配和热失配,通过表面活化处理石墨烯阻挡层提供氮化物LED的成核位点,进而得到高晶体质量、高发光效率的大功率氮化物垂直结构LED;本发明具有简化氮化物垂直结构LED制备工艺、提高氮化物LED的晶体质量和发光效率、提高氮化物LED散热能力、成本低、成品率高、设备简单易操作、适合产业化生产等优点。

    一种非极性面氮化物量子阱红外探测器及其制备方法

    公开(公告)号:CN110429146A

    公开(公告)日:2019-11-08

    申请号:CN201910724212.7

    申请日:2019-08-07

    Applicant: 北京大学

    Abstract: 本发明公开了一种非极性面氮化物量子阱红外探测器及其制备方法。本发明针对当前常见的c面氮化物QWIP存在极化电场的问题,提出采用非极性面氮化物多量子阱结构制备红外探测器,该结构不存在极化电场,易于载流子纵向输运;非极性面氮化物多量子阱为生长面应力补偿结构,有效缓解了非极性面生长的应力弛豫各向异性,提高制备非极性面氮化物材料的晶体质量;匹配电路中包括惠斯通电桥,根据红外光敏元件的电阻的大小设置相应的匹配电阻的大小,没有红外光照时电压截止元件处于非导通状态,通过电压截止元件抑制背景噪声,提高器件信噪比;采用第三代氮化物半导体材料制备,具有室温工作、紫外集成、红外光谱范围广等优势。

    一种宽波段高效紫外光源及其制备方法

    公开(公告)号:CN109787088A

    公开(公告)日:2019-05-21

    申请号:CN201910004608.4

    申请日:2019-01-03

    Applicant: 北京大学

    Abstract: 本发明公开了一种宽波段高效紫外光源及其制备方法。本发明通过控制多个顺次排列的多量子阱的厚度或元素组分,精确调控有源区的结构及发光波段,实现宽波段高效紫外光源;激励源采用电子束泵浦激励方式,该结构无需多结欧姆接触层,与传统LED结构相比结构简单,有效提高空穴注入效率;原子层或亚原子层的超薄势阱有效提高辐射复合几率,进而实现在深紫外波段的高光效输出;同时通过调控量子阱的周期数及势阱厚度,优化多量子阱的总厚度,既能保证电子束不会穿透光源的有源区,又能保证有源区的材料质量;采用III-V族或II-VI族半导体材料,实现几乎覆盖UVC、UVB全波段的高效紫外光源。

    一种可控阵列纳米线太阳能电池及其制备方法

    公开(公告)号:CN105304737B

    公开(公告)日:2018-02-13

    申请号:CN201510726104.5

    申请日:2015-10-30

    Applicant: 北京大学

    CPC classification number: Y02P70/521

    Abstract: 本发明公开了一种可控阵列纳米线太阳能电池及其制备方法。本发明的太阳能电池包括:衬底、N型掺杂层、N型纳米线、多量子阱、P型掺杂层、绝缘材料、P型电极和N型电极;N型纳米线和多量子阱构成核‑壳结构;通过设计图形化衬底的排布和直径,可精确调控阵列纳米线的周期和直径,满足不同太阳能电池的需求;N型纳米线的表面积/体积比较大,有效提高了太阳能电池的吸收面积;阵列纳米线具有光子晶体效应,可扩展其对太阳光谱的有效吸收范围;N型纳米线的直径小于太阳光波长,具有明显的聚光效应,调节N型纳米线的尺寸,提高太阳能电池的吸收效率;工艺简单,成本低廉,能实现批量生产。

    一种紫外阴极射线光源
    26.
    发明公开

    公开(公告)号:CN106409647A

    公开(公告)日:2017-02-15

    申请号:CN201611111212.2

    申请日:2016-12-06

    CPC classification number: H01J63/06

    Abstract: 本发明公开了一种紫外阴极射线光源,包括依次顺序设置的电子发射装置、电子倍增器、电场、磁场、高反膜、发光芯片、紫外光增透膜及出光窗口,发光芯片受电子激发发光,电子发射装置发出的电子依次经过电子倍增器、电场、磁场、高反膜后进入发光芯片激发该发光芯片发光,光线从出光窗口射出,电子发射装置为场发射装置或热发射装置。本发明实现阴极射线紫外光源在功率及光束尺寸要求等方面均可调的目的。

    一种生长高质量全组分可调三元半导体合金的方法

    公开(公告)号:CN103578935B

    公开(公告)日:2016-04-06

    申请号:CN201310586058.4

    申请日:2013-11-20

    Applicant: 北京大学

    Abstract: 本发明公开了一种生长高质量全组分可调三元半导体合金的方法。本发明的生长高质量全组分可调三元半导体合金的方法根据三元半导体合金的各原子的组分确定最佳生长温度以及各原子的原子束流,从而控制三元半导体合金的生长,得到了晶体质量良好、表面平整的全组分三元半导体合金,具有低的背景电子浓度和高的电子迁移率,室温下具有强烈的带边发光。本发明快速确定任意组分三元半导体合金的最佳生长条件,从而实现全组分生长;确保采用最高的生长温度生长,并且富金属生长条件形成表面活性剂,增强原子迁移能力;生长温度和相应的原子束流条件准确控制三元半导体合金的组分。

    一种可控阵列纳米线太阳能电池及其制备方法

    公开(公告)号:CN105304737A

    公开(公告)日:2016-02-03

    申请号:CN201510726104.5

    申请日:2015-10-30

    Applicant: 北京大学

    CPC classification number: Y02P70/521 H01L31/035236 H01L31/18 H01L31/1848

    Abstract: 本发明公开了一种可控阵列纳米线太阳能电池及其制备方法。本发明的太阳能电池包括:衬底、N型掺杂层、N型纳米线、多量子阱、P型掺杂层、绝缘材料、P型电极和N型电极;N型纳米线和多量子阱构成核-壳结构;通过设计图形化衬底的排布和直径,可精确调控阵列纳米线的周期和直径,满足不同太阳能电池的需求;N型纳米线的表面积/体积比较大,有效提高了太阳能电池的吸收面积;阵列纳米线具有光子晶体效应,可扩展其对太阳光谱的有效吸收范围;N型纳米线的直径小于太阳光波长,具有明显的聚光效应,调节N型纳米线的尺寸,提高太阳能电池的吸收效率;工艺简单,成本低廉,能实现批量生产。

    一种新型氮化物量子阱红外探测器及其制备方法

    公开(公告)号:CN104733561A

    公开(公告)日:2015-06-24

    申请号:CN201510127695.4

    申请日:2015-03-23

    Applicant: 北京大学

    CPC classification number: Y02P70/521

    Abstract: 本发明公开了一种新型氮化物量子阱红外探测器及其制备方法。本发明的量子阱红外探测器,在衬底上的掩膜层具有周期性排布的孔洞结构,纳米柱阵列从孔洞中生长出来,多量子阱生长在纳米柱阵列的顶部和侧面,分别对应为半极性面和非极性面多量子阱。其中,多量子阱生长于位错密度极低的纳米柱阵列上,可实现极高晶体质量的多量子阱结构;半极性面和非极性面多量子阱的极化场强度远低于传统极性面多量子阱的极化场强度,可实现高效光电流信号的提取;正面入射探测器表面即可有光电响应,省去传统量子阱红外探测器制备表面光栅结构或端面45°抛光的工艺;多量子阱材料采用第三代半导体材料,可实现全红外光谱窗口的光子探测,具有广阔的应用前景。

    检测半导体晶体或外延薄膜材料极性的方法及检测系统

    公开(公告)号:CN101614685B

    公开(公告)日:2012-03-21

    申请号:CN200910079885.8

    申请日:2009-03-13

    Applicant: 北京大学

    Abstract: 本发明公开了一种检测半导体晶体或外延薄膜材料极性的方法,所述方法包括以下步骤:利用圆偏振光辐照待测的半导体晶体或外延薄膜材料,并检测所产生的无偏压电流的电流方向;根据所述无偏压电流的电流方向,判断所述待测的半导体晶体或外延薄膜材料的极性。另外本发明还公开了一种半导体晶体或外延薄膜材料极性的检测系统。本发明的测试系统可在常温常压下工作,检测精确度高、制样简单快捷、检测速度快,对测试样品具有无损性,而且对测试人员的要求很低,操作非常容易,每个样品的测试时间仅为10分钟左右,更为重要的是整套测试系统价格低廉,可以大大降低测试成本。

Patent Agency Ranking