-
公开(公告)号:CN118691877A
公开(公告)日:2024-09-24
申请号:CN202410700827.7
申请日:2024-05-31
Applicant: 北京卫星信息工程研究所
IPC: G06V10/764 , G06V10/26 , G06V10/82 , G06V10/77 , G06N3/0464
Abstract: 本发明涉及一种高分遥感图像目标状态判别方法、设备及存储介质,包括:利用全景分割网络对高分遥感图像进行全景分割,得到高分遥感图像全景分割图像;根据高分遥感图像全景分割图像中地物目标之间的空间关系生成场景知识图谱;设计基于全景分割图像的遥感地物目标位置编码方法,将地物目标的位置编码加入到对应场景知识图谱中,得到包含位置信息的场景知识图谱;基于预先设定的先验规则知识,对关注目标进行状态的预先判别;构建基于混合卷积的目标动向判别网络,利用目标动向判别网络对经过预判别的场景知识图谱进行计算,得到关注目标的状态判别结果。本发明,能够实现遥感关注地物目标的状态判别。
-
公开(公告)号:CN116485652B
公开(公告)日:2024-03-01
申请号:CN202310465820.7
申请日:2023-04-26
Applicant: 北京卫星信息工程研究所
IPC: G06T3/4053 , G06T3/4023 , G06T7/13 , G06V10/44 , G06V10/774 , G06V10/764 , G06V10/82 , G06V10/80 , G06V10/54 , G06N3/0464 , G06N3/048 , G06N3/082
Abstract: 本发明涉及一种遥感影像车辆目标检测的超分辨率重建方法,包括:构建不同场景下丰富的高分辨率遥感影像数据集,对所述高分辨率遥感影像数据集进行预处理;根据所述高分辨率遥感影像数据集得到对应的低分辨率遥感影像数据集,构建目标超分重建数据集;提取所述低分辨率遥感影像数据集中低分辨率遥感影像的边缘特征;构建超分辨率重建模型,利用所述目标超分重建数据集和所述边缘特征训练优化所述超分辨率重建模型;利用所述超分辨率重建模型对目标进行高分辨率恢复和重建。通过实施本发明的上述方案,有效解决车辆目标因呈现出弱小特性而导致其检测率较低的问题,有效改善目标
-
公开(公告)号:CN116503733B
公开(公告)日:2024-02-06
申请号:CN202310460255.5
申请日:2023-04-25
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06V10/46 , G06V10/764 , G06T7/73
Abstract: 本发明涉及一种遥感图像目标检测方法、设备及存储介质,遥感图像目标检测方法包括以下步骤:获取遥感图像及其对应的目标类别标签;获取遥感图像中目标的关键特征;构建基于多尺度直方图对比的改进视觉显著模型,对遥感图像中的目标进行粗略检测;提取粗检测后的目标特征算子,构建目标特征显著图,进行遥感图像中目标的高精度检测;利用目标在遥感图像中的分布规律,完成目标的识别和定位。本发明,能够适用于背景环境复杂的遥感图形,有利于降低虚警,减小其他类型虚假目标对目标定位的影响,不仅可以实现遥感图像中目标的检测,还可以通过目标特征及目标的排布方式进行目标的识别,
-
公开(公告)号:CN116450632A
公开(公告)日:2023-07-18
申请号:CN202310421521.3
申请日:2023-04-18
Applicant: 北京卫星信息工程研究所
IPC: G06F16/215 , G06F16/29
Abstract: 本发明涉及一种地理样本数据质量评估方法、设备及存储介质,地理样本数据质量评估方法包括:分析多应用层级的地理人工智能样本数据的质量特征,建立多应用层级的样本数据质量指标体系;确定进行质量评估的地理人工智能样本数据集的特征与质量规范;确定进行质量评估的地理人工智能样本数据集的质量评估规范;执行地理人工智能样本数据质量评估,获取质量评估结果;基于质量评估结果,生成地理人工智能样本数据质量评估报告。本发明,能够满足像素级、目标级、场景级多应用层级的地理人工智能样本数据的质量评估需求,为地理人工智能样本数据的质量评估提供系统性参考,从而帮助提高样本数据的可靠性。
-
公开(公告)号:CN115019181B
公开(公告)日:2023-02-07
申请号:CN202210900309.0
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/04 , G06N3/08 , G06V10/52 , G06V10/764 , G06V10/766 , G06V10/77 , G06V10/82
Abstract: 本发明涉及一种遥感图像旋转目标检测方法、电子设备及存储介质,在训练中,对给定的目标位置标签,先利用椭圆分布采样方式,获取丰富的样本点;利用自适应前景采样策略,从高层特征图到低层特征图依次获取高质量的前景样本点,与网络预测的前景目标一起输入到损失函数,从而学到更准确的目标特征表示方法,基于标签中目标真值坐标,通过调整椭圆长边与短边的长度,自适应地在特征图上进行采样,避免了小尺寸目标在特征金字塔中难以获取采样点和大尺寸获取过多冗余采样点的问题,通过自适应的方法提升了采样精度和泛化性,对高分辨率遥感图像旋转框目标检测具有重要意义。
-
公开(公告)号:CN115019180B
公开(公告)日:2023-01-17
申请号:CN202210900308.6
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/04 , G06N3/08 , G06V10/764 , G06V10/766 , G06V10/77 , G06V10/82 , G06V10/80
Abstract: 本发明涉及一种SAR图像舰船目标检测方法、电子设备及存储介质,四种单极化图像目标检测网络指导学生目标检测网络学习“极化特征知识”,全极化的目标检测网络指导学生目标检测网络学习输出端“响应知识”,有效地减少了不同极化样本分布不均衡情况导致的目标检测模型训练时存在网络过拟合问题,使得学生目标检测网络对于不同极化方式的SAR数据都有较好的检测能力,保证了学生目标检测网络的稳定性与可靠性,在降低目标检测网络复杂度的同时,得到适用于不同极化SAR图像的舰船目标检测器。
-
公开(公告)号:CN115272856A
公开(公告)日:2022-11-01
申请号:CN202210900854.X
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/04 , G06N3/08 , G06V10/52 , G06V10/764 , G06V10/766 , G06V10/77 , G06V10/82
Abstract: 本发明涉及一种舰船目标细粒度识别方法及设备,结合细粒度分类结果和旋转框参数,实现对舰船目标的细粒度识别,避免了成像条件、拍摄角度和舰船目标中心点或角点位置随机导致模型难以聚焦关键点处的细粒度特征的问题,提高了模型定位关键点的准确度,通过构建关键点注意力,引导模型聚焦关键点区域的细粒度特征及其内在自相关性,提高了舰船目标的细粒度识别准确率,为舰船目标细粒度识别提供了一种切实可行的技术途径,在遥感目标识别领域有较大的实际应用价值。
-
公开(公告)号:CN115100449A
公开(公告)日:2022-09-23
申请号:CN202210921778.0
申请日:2022-08-02
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种遥感数据多目标关联匹配与轨迹生成方法及设备,利用SIFT尺度不变的特性对多模态序列遥感图像进行空间配准,再利用基于拓扑特征相似度匹配的多目标关联匹配方法对图像中的目标信息进行关联匹配,该发明可以将不同传感器在空间及时间上的冗余或互补信息进行组合,获得比单一传感器单时相数据更完善更准确的目标轨迹信息,具有高效率、高精度的特点。
-
公开(公告)号:CN115097456A
公开(公告)日:2022-09-23
申请号:CN202210921935.8
申请日:2022-08-02
Applicant: 北京卫星信息工程研究所
IPC: G01S13/90 , G01S7/292 , G01S7/295 , G01S7/35 , G06V20/13 , G06N3/04 , G06V10/25 , G06V10/26 , G06V10/82
Abstract: 本发明涉及一种合成孔径雷达(SAR)卫星遥感数据在轨检测方法、装置及可读存储介质,所述方法包括:通过主控模块获取SAR原始回波数据;通过SAR成像模块根据所述SAR原始回波数据完成SAR成像处理;通过目标检测模块对所述SAR成像后的图像进行分块处理;通过所述目标检测模块将所述图像分块处理后的图像切片输入目标检测算法;通过所述目标检测模块提取所述图像切片和目标位置。本发明各模块实现最优能效比配置,兼顾性能与成本,实现轻量化高效能计算,适用于SAR卫星数据目标信息的在轨实时智能提取,尤其是适用于不同成像模式下SAR原始回波数据的在轨实时成像和目标检测处理,实现SAR遥感目标高精度实时检测。
-
公开(公告)号:CN115019184A
公开(公告)日:2022-09-06
申请号:CN202210900866.2
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种基于遥感影像的石漠化程度自动分级方法及装置,该方法包括:获取石漠化区域的原始遥感影像和高程数据,并进行预处理;利用处理后的遥感影像反演所述石漠化区域的基岩裸露率和植被覆盖度,利用处理后的高程数据计算坡度数据;将所述基岩裸露率、所述植被覆盖度、所述高程数据和所述原始遥感影像进行融合,得到样本数据,对所述样本数据的石漠化程度进行等级区分和标注,获得标签文件;构建CKRD‑DNN模型,并利用所述样本数据和所述标签文件进行训练;利用训练好的CKRD‑DNN模型对待分级的石漠化区域遥感影像进行识别和判定,得到分级结果。本发明可以实现大范围石漠化区域不同发育程度石漠化的高效自动分级和判定。
-
-
-
-
-
-
-
-
-