-
公开(公告)号:CN119445380A
公开(公告)日:2025-02-14
申请号:CN202411502090.4
申请日:2024-10-25
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种基于遥感影像的建筑物智能提取方法:步骤S1、获取高分辨率数据集;步骤S2、设计基于编码‑解码结构的遥感影像建筑物语义分割网络,包括特征提取骨架网络和语义分割解码器;步骤S3、设计基于生成对抗网络的遥感影像建筑物DSM估计网络,包括DSM生成器和DSM判别器,DSM生成器包括DSM生成器编码器和DSM生成器解码器;步骤S4、设计特征融合与加强模块;步骤S5、设计损失函数;步骤S6、根据高分辨率数据集和损失函数,训练优化遥感影像建筑物智能提取网络;步骤S7、通过训练完成的遥感影像建筑物智能提取网络进行基于遥感影像的建筑物智能提取。本发明的方法解决了DSM获取代价昂贵的问题,有效改善提取遥感影像中的建筑物的性能。
-
公开(公告)号:CN118736431A
公开(公告)日:2024-10-01
申请号:CN202410739940.6
申请日:2024-06-07
Applicant: 北京卫星信息工程研究所
IPC: G06V20/13 , G06T5/50 , G06T3/4053 , G06V10/764 , G06V10/774 , G06V10/80 , G06F17/16 , G06F17/18 , G06N3/0464 , G06N3/0455 , G06N3/042 , G06N3/048 , G06N3/084
Abstract: 本发明涉及一种基于遥感图像变化检测的场景态势生成方法,包括:获取同一区域不同时相的两幅高分辨率卫星遥感影像,并进行预处理;构建基于Swin Transformer的双分支U‑net变化检测网络,对不同时相的两幅所述高分辨率卫星遥感影像进行变化检测;根据变化检测网络输出的变化地物的边界信息对空间关系建模,构建图卷积神经网络,生成边集和邻接矩阵;使用人工标注的遥感变化检测数据集,对图卷积神经网络进行训练,得到基于遥感图像变化检测的场景态势生成模型;利用训练好的基于遥感图像变化检测的场景态势生成模型,对测试集中的数据进行测试,得到遥感变化图像的态势。本发明,充分利用双时相遥感图像的丰富语义信息,实现变化场景态势的自动生成。
-
公开(公告)号:CN116630820B
公开(公告)日:2024-02-06
申请号:CN202310530434.1
申请日:2023-05-11
Applicant: 北京卫星信息工程研究所
IPC: G06V20/13 , G06V10/26 , G06V10/32 , G06V10/44 , G06V10/762 , G06V10/764 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种光学遥感数据星上并行处理方法与装置,所述装置包括:主控与预处理模块(100),用于通过星务轮询方式获取光学遥感数据并进行预处理与切片处理;至少一个数据处理模块(200),用于对所述预处理与切片处理后的光学遥感数据进行目标的并行检测识别或语义分割,再将结果回传至所述主控与预处理模块理模块(100)和所述数据处理模块(200)上电;背板(400),用于连接所述主控与预处理模块(100)、所述数据处理模块(200)和所述电源模块(300)。通过实施本发明的上述方案,可用于光学遥感卫星数据的在轨并行处理,从而实现目标的在轨实时检测识别以及光学遥感数据的在轨实时语义分割。(100);电源模块(300),用于对所述主控与预处
-
公开(公告)号:CN116486265B
公开(公告)日:2023-12-19
申请号:CN202310468626.4
申请日:2023-04-26
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06V10/26 , G06V10/764 , G06V10/82 , G06V10/44 , G06V10/766 , G06V10/422 , G06N3/0464 , G06N3/042 , G06N3/08
Abstract: 本发明涉及一种基于目标分割与图分类的飞机细粒度识别方法,包括:构建并训练基于Mask R‑CNN的目标定位与分割模型,对遥感图像中的飞机目标进行检测与分割;对分割出的飞机目标掩膜通过轮廓提取和多边形拟合提取轮廓多边形,将轮廓多边形的线段作为节点,将线段的几何特征和线段对应部件的卷积特征作为节点属性,并根据线段间的空间关系构建图结构数据;构建融合几何特征和卷积特征的图卷积神经网络模型;利用所述图结构数据训练所述图卷积神经网络模型,对描述飞机形状特征和部件特征的图结构进行整图分类,实现飞机目标的细粒度识别。通过实施本发明的上述方案,通过综合利(56)对比文件US 2020285944 A1,2020.09.10US 2022343537 A1,2022.10.27瑚敏君 等.基于实例分割模型的建筑物自动提取《.测绘通报》.2020,(第4期),第16-20页.
-
公开(公告)号:CN116385881B
公开(公告)日:2023-11-14
申请号:CN202310378004.2
申请日:2023-04-10
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06V10/25 , G06V10/40 , G06V10/80 , G06V10/82 , G06V10/774 , G06V10/764
Abstract: 本发明涉及遥感图像地物变化检测方法及装置,包括获取同一区域不同时相的两幅图像;利用两个共享权重的U‑Net作为主干网络,对输入的两个时相的遥感图像,经过主干网络的两个分支进行特征提取;对两个分支提取的特征进行局部交换;通过多头自注意力机制,对交换后得到的特征进行全尺度的特征提取;再对两个分支的遥感图像恢复空间尺度,然后对特征进行融合,得到新的融合分支;利用U‑Net网络的两个分支和融合分支进行地物变化检测,得到遥感图像地物变化检测结果。本发明能够有效提高遥感图像地物变化的检测精度。
-
公开(公告)号:CN119741467A
公开(公告)日:2025-04-01
申请号:CN202411637460.5
申请日:2024-11-15
Applicant: 北京卫星信息工程研究所
IPC: G06V10/25 , G01S13/90 , G06V20/13 , G06V10/44 , G06V10/46 , G06V10/80 , G06V10/762 , G06V10/764 , G06V10/766 , G06V10/84 , G06N3/0464 , G06N3/045
Abstract: 本发明涉及一种基于光学和SAR遥感数据的飞机目标检测识别方法与装置,所述方法包括以下步骤:S1、选用标注完整的SAR图像形成数据集A用来训练第一目标检测模型;S2、选用与数据集A处于同区域同时刻的光学图像形成数据集B用来训练第二目标检测模型;S3、获取同区域同时刻的SAR、光学图像,并分别输入第一、第二目标检测模型检测,并根据检测目标的姿态角分别对第一、第二目标检测模型的检测结果进行旋转变换,获得第一、第二检测结果;S4、通过基于注意力的决策融合检测算法对上述第一、第二检测结果进行决策融合。本发明采用深度学习图像处理方法,通过光学、SAR多传感器数据融合检测技术,有效提高了目标识别的准确性。
-
公开(公告)号:CN119251680A
公开(公告)日:2025-01-03
申请号:CN202411380023.X
申请日:2024-09-30
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06V10/764 , G06V10/774 , G06V10/74 , G06V10/82 , G06N3/08 , G06N3/045 , G06N3/048
Abstract: 本发明涉及一种基于提示学习的遥感图像分类方法,包括:获取遥感图像样本及其真实类别标签,并进行预处理,形成遥感图像数据集;根据遥感图像数据集,通过图像编码器和文本编码器,获得遥感图像样本的图像特征向量和文本特征向量;计算遥感图像样本的图像特征向量和文本特征向量之间的相似性,得到遥感图像样本的预测类别标签;计算分类损失和对比损失,重复执行上述步骤,训练并输出分类模型;利用分类模型进行遥感图像分类。本发明,通过上述方法缓解了遥感图像分类方法中语义信息不足的问题,提高了遥感图像分类准确性。
-
公开(公告)号:CN119251679A
公开(公告)日:2025-01-03
申请号:CN202411380020.6
申请日:2024-09-30
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06V10/25 , G06V10/44 , G06V10/80 , G06V10/764 , G06V10/82 , G06V10/766
Abstract: 本发明的基于双曲空间映射的遥感图像目标检测方法,包括S1、提取遥感图像的特征,得到层级特征图;S2、通过特征融合网络,融合相同类型的层级特征图,获得第一多层级特征图;S3、利用双曲空间映射网络将第一多层级特征图的通道信息投影到双曲空间,得到第二多层级特征图;S4、拼接第一多层级特征图和第二多层级特征图,获得融合特征图;S5、构建特征检测头,检测融合特征图,计算分类损失和位置预测损失;S6、重复S1至S5,训练遥感图像目标检测模型;S7、利用S6得到的遥感图像目标检测模型检测遥感图像。本发明通过增强预测特征图的信息维度,帮助模型理解数据分布,学习更抽象的特征表示,从而提高对目标检测任务的泛化能力。
-
公开(公告)号:CN116563680B
公开(公告)日:2024-02-06
申请号:CN202310493846.2
申请日:2023-05-05
Applicant: 北京卫星信息工程研究所
IPC: G06V10/80 , G06V10/52 , G06V10/764 , G06V10/774 , G06V10/82 , G06V20/10
Abstract: 本发明涉及一种基于高斯混合模型的遥感图像特征融合方法、电子设备,通过特征提取主干网络提取输入遥感图像特征,得到不同层级位置的特征图;构建特征融合网络并对不同层级位置的特征图进行融合,获得遥感图像目标的多特征图;构建多个高斯混合模型拟合多特征图,获得高斯混合模型的参数;对多个高斯混合模型进行加权平均融合,利用融合后的高斯混合模型生成数据并与原始特征图拼接;利用融合特征图输入检测模型的检测头,进行遥感图像检测,计算分类、位置预测损失;重复执行上述步骤,训练检测模型;利用检测模型进行检测。本发明,提升了模型分类和定位出遥感图像中的感兴趣目标的能力,提高遥感图像目标定位准确性,提高模型检测能力。
-
公开(公告)号:CN116450613B
公开(公告)日:2023-12-19
申请号:CN202310418313.8
申请日:2023-04-18
Applicant: 北京卫星信息工程研究所
IPC: G06F16/21 , G06F16/25 , G06F16/29 , G06F16/955
Abstract: 本发明涉及一种面向资源的地理样本数据服务方法、设备及存储介质,建立地理人工智能样本数据服务元数据描述的概念模型和逻辑模型;建立地理人工智能样本数据服务资源体系;构建面向资源的地理人工智能样本数据服务接口及接口与地理人工智能样本数据服务资源的映射关系;定义表述性状态转换风格的地理人工智能样本数据服务资源的统一资源描述标识符,并与样本数据服务接口绑定;发布地理人工智能样本数据服务的网络访问接口。本发明,增强了空间数据基础设施的智能化服务能力,从而支持建设人工智能就绪的空间数据基础设施,满足了多源异构的地理人工智能样本数据的共享服务
-
-
-
-
-
-
-
-
-