PCB电路调整组件及天线

    公开(公告)号:CN110072330B

    公开(公告)日:2024-08-13

    申请号:CN201910378169.3

    申请日:2019-05-08

    Abstract: 本发明涉及一种PCB电路调整组件及天线,其中调整组件包括:PCB基板,PCB基板上设有被测线路和与被测线路间隔设置的金属地层,PCB基板内设有导电通孔,被测线路上开设有上容置孔,金属地层上开设有下容置孔;用于与被测线路耦合的耦合片,耦合片的至少部分设置在上容置孔内且与被测线路间隔设置,耦合片与导电通孔的一端连通;用于调整被测线路的调节片,调节片设置在下容置孔内且与金属地层连接和/或断开设置,调节片与导电通孔的另一端连通。调节片布置在金属地层内,被测线路没有开放外露,降低了电磁泄露和噪声干扰的影响,调整组件与被测线路均基于PCB电路工艺布置生成,无需附加额外调试部件,使得生产和调试都非常简便。

    复合网络微波器件及天线

    公开(公告)号:CN110085953B

    公开(公告)日:2024-07-26

    申请号:CN201910452985.4

    申请日:2019-05-28

    Abstract: 本发明提供一种复合网络微波器件及天线,其中,所述复合网络微波器件包括具有第一空腔的微波器件腔体及置于其内的复合微波网络,所述复合微波网络包括第一微波网络及至少一个第二微波网络,所述微波器件腔体中设有至少两块隔板,所述隔板开设有让位槽,且相邻两块所述隔板相对设置并在所述第一空腔内限定出第二空腔;所述第二微波网络设于所述第二空腔内,所述第一微波网络设于第一空腔,并从所述让位槽穿入第二空腔内与第二微波网络相交且电连接。第二微波网络与隔板可构成带状线结构,第二微波网络的电场分布都在由两块隔板限定而成的第二空腔中,从而可提高第二微波网络的抗干扰能力,以便于复合微波网络之间的信号传输。

    移相器及天线
    25.
    发明授权

    公开(公告)号:CN109994804B

    公开(公告)日:2024-01-30

    申请号:CN201910308085.2

    申请日:2019-04-17

    Abstract: 本发明涉及一种移相器及天线,其中移相器包括:移相器电路板,移相器电路板包括输入支路和多个输出支路,输入支路与天线信号输入端电连接,每个输出支路与各自对应的天线辐射单元电连接,且输入支路与至少一个输出支路呈断开状态;开关切换电路组件,开关切换电路组件包括旋转机构,旋转机构可转动的连接在移相器电路板上,旋转机构上设置有切换开关,其中,在旋转机构转动时带动切换开关转动,以控制输入支路与多个输出支路的导通或断开,以选择相应的天线辐射单元工作。由此,可改变接入的天线辐射单元的数量,进而实现天线波束宽度的调整,以覆盖不同范围的区域。

    天线校准网络装置
    26.
    发明授权

    公开(公告)号:CN108696322B

    公开(公告)日:2024-01-30

    申请号:CN201810362014.6

    申请日:2018-04-20

    Abstract: 本发明涉及一种天线校准网络装置,包括金属底板、校准电路及屏蔽罩。屏蔽罩可起到抗外部冲击并屏蔽外部电磁干扰的作用。而且,隔板将屏蔽腔分隔为第一屏蔽腔及第二屏蔽腔,等功率分配器及定向耦合器分别位于第一屏蔽腔内及第二屏蔽腔内,故可使等功率分配器及定向耦合器位于单独的腔体内。因此,可防止等功率分配器的信号对定向耦合器产生串扰。进一步的,隔板将屏蔽腔分隔为多个部分,可改变屏蔽腔的固有谐振频率,从而避免屏蔽腔的固有谐振频率位于天线校准网络装置的工作频带内,进而避免在屏蔽腔内产生谐振自激而破坏校准的幅度及相位。可见,上述天线校准网络装置可从外部及内部两方面消除干扰,故能有效地提升幅相的一致性。

    多制式融合的天线
    28.
    发明公开

    公开(公告)号:CN110071373A

    公开(公告)日:2019-07-30

    申请号:CN201810201500.X

    申请日:2018-03-12

    Abstract: 本发明提供了一种多制式融合的天线,包括:具有Massive MIMO阵列的第一天线系统,所述Massive MIMO阵列包括多个子阵,多个所述子阵排列形成M×N的阵列,其中,M和N均为≥1的自然数,所述子阵包括沿水平方向间隔设置的至少两个第一辐射单元;具有天线阵列且工作于设定网络制式的第二天线系统,所述设定网络制式为4G网络制式、3G网络制式及2G网络制式中的至少一种;所述第一天线系统和第二天线系统共用天线罩。该天线实现了两种或多种天线系统的一体化设计,有利于减小网络规划难度、降低成本;此外,通过采用上述Massive MIMO阵列还可实现较高的网络容量,并在不增大天线体积的前提下实现水平窄波束和垂直面大张角,特别适合应用于狭长场景的网络覆盖。

Patent Agency Ranking