-
公开(公告)号:CN115248468A
公开(公告)日:2022-10-28
申请号:CN202211008273.1
申请日:2022-08-22
Applicant: 之江实验室
Abstract: 本发明公开了一种高色散高衍射效率的折射反射混合型光栅,包括带周期性直角三角形沟槽的金属基底、直角三角形沟槽的填充介质和设置于填充介质上表面的子光栅;直角三角形沟槽的周期、直角三角形沟槽的斜面与光栅平面的夹角、填充介质的折射率和光栅工作波段的中心波长满足由反射定律、折射定律和光栅衍射方程得出的定量关系式,本发明的折射反射混合型光栅可以在衍射角大于75度的条件下同时实现高于90%的衍射效率和高于2毫弧度/纳米的角色散本领。
-
公开(公告)号:CN116612051B
公开(公告)日:2024-03-19
申请号:CN202310493296.4
申请日:2023-05-05
IPC: G06T5/10 , G06T5/00 , G06T3/4053 , G06N3/0464
Abstract: 一种基于频谱域滤波的干涉散射图像弱信号的实时恢复方法和系统,通过拍摄一幅无样品图像或初始化一个全一矩阵,并结合系统特征的干涉点扩散函数在频谱域进行信号的增强,实现对弱信号的恢复,和动态背景的重构。本发明针对干涉散射成像系统的拍摄图像,对图像微弱信号进行实时恢复。传统干涉散射图像恢复方法大多采用多帧平均方式消除噪声,对图像数量要求大,无法做到实时恢复;现有单帧恢复方式,恢复结果噪声大,且对信背比较小图像无法恢复。本发明通过根据系统特性仿真得到的干涉点扩散函数图像,对实验拍摄的干涉散射图像进行频谱增强,实现对观测信号的实时恢复,同时可以大大提高系统的时间分辨率,且适用于动态、静态样品。
-
公开(公告)号:CN116773448A
公开(公告)日:2023-09-19
申请号:CN202310733625.8
申请日:2023-06-20
Applicant: 之江实验室
Abstract: 一种综合性单分子显微成像方法及装置,包括激光器、透镜组、分束器、四分之一波片、反射镜、三维位移台、待测样品、长焦管透镜、推拉式滤光板、成像物镜和工业相机。在光路中首先改变反射镜的角度使得入射光以相应材料所对应的超临界角或表面等离子体共振角等多种角度入射;其次使用一个推拉式滤光板调节样品面反射光的收集与否,实现在一套系统中对同一样品的全内反射‑干涉散射显微成像、表面等离子体共振‑干涉散射成像、传统干涉散射成像以及暗场成像四种模式。本发明提供一种多模态可相互验证的无标记成像技术,可大幅提升装置利用率和在实际体系中的复用能力。
-
公开(公告)号:CN115619646B
公开(公告)日:2023-04-18
申请号:CN202211577360.9
申请日:2022-12-09
Abstract: 本发明公开了一种亚五十纳米结构光照明超分辨显微成像方法,涉及光学超分辨显微成像领域,先通过图像退化获得高分辨STORM图像和低分辨SIM图像并进行配对、再对配对的数据进行训练数据集制作,然后通过训练的去噪网络进行去噪优化,最后通过SIM超分辨重构,输出高分辨率图像,本发明将传统SIM技术的分辨率提升至50 nm,同时不损失其快速、低光毒性、长时程成像能力;所需的训练集通过高分辨图像退化得到,无需实验获取,无需复杂的配准过程,大大降低了训练集的制作难度;本方法不增加任何系统复杂度,可基于任何已有SIM系统实现,应用范围广。
-
公开(公告)号:CN115201953B
公开(公告)日:2023-01-20
申请号:CN202211009602.4
申请日:2022-08-22
Applicant: 之江实验室
IPC: G02B5/18
Abstract: 本发明公开了一种双工作波段高衍射效率复合反射光栅,包括透明基底、设置于透明基底上的周期性高折射率栅条和设置于高折射率栅条上表面的金属薄膜;高折射率栅条的折射率大于透明基底的折射率;高折射率栅条的周期、高折射率栅条的斜面与光栅平面的夹角、高折射率栅条的折射率、光栅工作短波段的中心波长和光栅工作长波段的中心波长满足由反射定律、折射定律和光栅衍射方程得出的定量关系式,金属薄膜的厚度满足由趋肤效应得出的定量关系式。本发明的复合反射光栅可以在间隔超过400nm的两个中心波长处同时实现高于90%的衍射效率。
-
公开(公告)号:CN115619646A
公开(公告)日:2023-01-17
申请号:CN202211577360.9
申请日:2022-12-09
Abstract: 本发明公开了一种亚五十纳米结构光照明超分辨显微成像方法,涉及光学超分辨显微成像领域,先通过图像退化获得高分辨STORM图像和低分辨SIM图像并进行配对、再对配对的数据进行训练数据集制作,然后通过训练的去噪网络进行去噪优化,最后通过SIM超分辨重构,输出高分辨率图像,本发明将传统SIM技术的分辨率提升至50 nm,同时不损失其快速、低光毒性、长时程成像能力;所需的训练集通过高分辨图像退化得到,无需实验获取,无需复杂的配准过程,大大降低了训练集的制作难度;本方法不增加任何系统复杂度,可基于任何已有SIM系统实现,应用范围广。
-
-
-
-
-