-
公开(公告)号:CN110160659A
公开(公告)日:2019-08-23
申请号:CN201910414292.6
申请日:2019-05-17
Applicant: 中国科学院上海技术物理研究所
IPC: G01J5/20
Abstract: 本发明公开了一种敏感元刻蚀型的非制冷红外窄带探测器及制备方法,所述探测器由氧化铝衬底,金属反射层,锰钴镍氧敏感元,锰钴镍氧介质超表面结构层,锗单晶半球透镜,以及器件管座组成。通过精确控制刻蚀敏感元的结构参数,形成特定图案的锰钴镍氧介质超表面结构层,可以实现器件对特定波长的光达到完美吸收的效果;同时反射非特定波长的光,提升器件窄带探测的能力。本发明结构中,由于未引入等离子激元型的金属人工微结构,避免了能量在金属结构中的大量损失,从而保证了器件中敏感元部分吸收达到80%以上,光谱曲线的品质因子(Q值)可以达到15左右,对改善非制冷红外窄带探测器的响应率和目标识别精确度方面都有着十分重要的意义。
-
-
公开(公告)号:CN106784029A
公开(公告)日:2017-05-31
申请号:CN201710038485.7
申请日:2017-01-19
Applicant: 中国科学院上海技术物理研究所
IPC: H01L31/02 , H01L31/0232 , H01L31/08 , G01J1/42
CPC classification number: H01L31/02016 , G01J1/42 , G01J2001/4295 , H01L31/02327 , H01L31/08
Abstract: 本发明公开了一种太赫兹线列探测装置。该探测装置由八元线列式探测器件、组合聚焦装置、可控温杜瓦单元、前置放大器及读出电路等四部分组成。该线列太赫兹探测装置通过八元铜光锥和聚四氟乙烯透镜组成的聚焦装置会聚入射的太赫兹波;通过平面耦合型碲镉汞探测器件接收太赫兹波并将其转换为电信号,并由前置放大器及读出电路放大并读出;可控温杜瓦单元用于提供合适的工作温度。该种线列探测器件响应范围可覆盖0.03‑4THz,可在近室温及液氮(77‑250K)条件下实现高灵敏度线列扫描式太赫兹探测。
-
公开(公告)号:CN106707288A
公开(公告)日:2017-05-24
申请号:CN201710037294.9
申请日:2017-01-19
Applicant: 中国科学院上海技术物理研究所
Abstract: 本发明公开一种太赫兹差频源远距离主动探测系统,该系统包括高功率1064nm激光器、光学参量振荡器、光束延迟线、半波片、偏振分光棱镜、硒化镓晶体、太赫兹透镜、太赫兹反射镜以及太赫兹探测器。该发明利用高功率太赫兹差频源辐射技术,结合太赫兹透镜组准平行发射‑回波聚焦技术,实现远距离目标的太赫兹反射/散射信号主动探测。本发明具有覆盖波段宽,频段兼容性好,结构简单,系统信噪比高,探测距离远,室温工作等优点。
-
公开(公告)号:CN118603304A
公开(公告)日:2024-09-06
申请号:CN202410629601.2
申请日:2024-05-21
Applicant: 中国科学院上海技术物理研究所
IPC: G01J1/42
Abstract: 本发明公开了一种热敏型线列太赫兹探测器及其制备方法,所述太赫兹探测器从下至上依次包括铜硅底座、宝石衬底、锰钴镍氧热敏元、环氧胶和聚合物衍生陶瓷(Polymer derived ceramic,PDC)吸收膜。本发明结合PDC吸收膜和锰钴镍氧热敏元,实现了器件对0.1‑10THz的宽波段近完美吸收(90%以上)。通过硅材料湿法方法实现下凹型硅金字塔阵列,以其为模版制作聚合物金字塔阵列,通过热解方法制备得到PDC吸收膜,可贡献0.1~10THz的高吸收。本发明结合可有效解决原有锰钴镍氧热敏探测敏感元光吸收弱的问题,实现宽波段太赫兹探测。
-
公开(公告)号:CN110160659B
公开(公告)日:2023-09-12
申请号:CN201910414292.6
申请日:2019-05-17
Applicant: 中国科学院上海技术物理研究所
IPC: G01J5/20
Abstract: 本发明公开了一种敏感元刻蚀型的非制冷红外窄带探测器及制备方法,所述探测器由氧化铝衬底,金属反射层,锰钴镍氧敏感元,锰钴镍氧介质超表面结构层,锗单晶半球透镜,以及器件管座组成。通过精确控制刻蚀敏感元的结构参数,形成特定图案的锰钴镍氧介质超表面结构层,可以实现器件对特定波长的光达到完美吸收的效果;同时反射非特定波长的光,提升器件窄带探测的能力。本发明结构中,由于未引入等离子激元型的金属人工微结构,避免了能量在金属结构中的大量损失,从而保证了器件中敏感元部分吸收达到80%以上,光谱曲线的品质因子(Q值)可以达到15左右,对改善非制冷红外窄带探测器的响应率和目标识别精确度方面都有着十分重要的意义。
-
公开(公告)号:CN106707288B
公开(公告)日:2023-07-04
申请号:CN201710037294.9
申请日:2017-01-19
Applicant: 中国科学院上海技术物理研究所
Abstract: 本发明公开一种太赫兹差频源远距离主动探测系统,该系统包括高功率1064nm激光器、光学参量振荡器、光束延迟线、半波片、偏振分光棱镜、硒化镓晶体、太赫兹透镜、太赫兹反射镜以及太赫兹探测器。该发明利用高功率太赫兹差频源辐射技术,结合太赫兹透镜组准平行发射‑回波聚焦技术,实现远距离目标的太赫兹反射/散射信号主动探测。本发明具有覆盖波段宽,频段兼容性好,结构简单,系统信噪比高,探测距离远,室温工作等优点。
-
公开(公告)号:CN110044476B
公开(公告)日:2021-02-12
申请号:CN201910271495.4
申请日:2019-04-04
Applicant: 中国科学院上海技术物理研究所
Abstract: 本发明公开了一种基于反铁磁非磁金属异质结的太赫兹探测器,属于光电探测技术领域,该方法利用反铁磁材料在太赫兹波段的反铁磁耦合共振吸收特性,将太赫兹辐射能量转化为自旋波,利用具有强自旋‑轨道耦合的非磁金属中逆自旋霍尔效应将自旋波在界面处转化为电荷流,在非磁金属表面两侧电极读出电压信号,从而实现对太赫兹辐射探测。该发明利用了电子自旋属性来实现太赫兹探测,是一种自旋太赫兹探测器,具有零功耗、响应快、易集成、可室温工作等优点。
-
公开(公告)号:CN110672211B
公开(公告)日:2020-11-20
申请号:CN201910856628.4
申请日:2019-09-11
Applicant: 中国科学院上海技术物理研究所
Abstract: 本发明公开了一种纳米金修饰的非制冷红外探测器及制作方法。通过在氮化硅微桥衬底上依次制备镍铬薄膜底电极,纳米金修饰的锰钴镍氧薄膜,单层石墨烯薄膜顶电极,实现多波段响应的非制冷红外探测。该红外探测器响应波段为0.3‑2μm,3‑5μm和8‑14μm。其中0.3‑2μm响应来自锰钴镍材料的吸收,3‑5μm的响应来自于3‑5μm减反谐振腔及纳米金颗粒吸收,而8‑14μm波段吸收来自NiCr下电极。顶底电极结构可使锰钴镍氧探测器相比传统器件电阻减小3个数量级,器件噪声比较传统平面型器件降低1‑2个数量级,易于集成。
-
公开(公告)号:CN110265491A
公开(公告)日:2019-09-20
申请号:CN201910411811.3
申请日:2019-05-17
Applicant: 中国科学院上海技术物理研究所
IPC: H01L31/0216 , H01L31/09 , H01L31/18 , G01J5/20
Abstract: 本发明公开了一种硅介质超表面的非制冷红外窄带探测器及制备方法,所述探测器由氧化铝衬底,金属下电极,锰钴镍氧敏感元,硅介质超表面结构层,以及器件管座组成。通过在锰钴镍氧敏感元上,引入硅介质超表面结构层,作为耦合特定波长的光的引导层,形成导模共振条件,实现整个结构对特定波长光的完美吸收;同时反射非特定波长的光,达到器件窄带探测的效果。本发明结构中,由于硅介质结构层在红外波段具有极弱的吸收系数,吸收主要发生在敏感元部分,可以使得敏感元吸收达到85%左右,光谱曲线的品质因子(Q值)可以高达20,对于提升非制冷红外窄带探测器的探测率和目标识别准确率有着十分重要的意义。
-
-
-
-
-
-
-
-
-