-
公开(公告)号:CN101251485A
公开(公告)日:2008-08-27
申请号:CN200810035500.3
申请日:2008-04-02
Applicant: 中国科学院上海技术物理研究所
Abstract: 本发明公开了一种利用荧光光谱测量半导体量子点尺寸分布的方法。该方法通过实测半导体多量子点体系的PL谱;从有效质量近似下的含时微扰的薛定谔方程出发,计算半导体多量子点的PL谱;而后通过理论和实验PL谱对照获得量子点的尺寸分布,其中,PL谱的中心波长对应占比率最大的量子点的复合发光,而PL谱的形状对应尺寸的分布规律。本发明操作简便,耗时短;可以明确获得半导体多量子点体系的尺寸分布。
-
公开(公告)号:CN101196552A
公开(公告)日:2008-06-11
申请号:CN200710171904.0
申请日:2007-12-07
Applicant: 中国科学院上海技术物理研究所 , 上海蓝宝光电材料有限公司
IPC: G01R31/26
Abstract: 本发明公开了一种判断多量子阱发光二级管材料中高效量子结构存在的方法。该方法是通过注入电流的变化,利用显微荧光光谱仪的面扫描功能对LED发光表面进行光谱扫描测量,根据测得的显微发光光谱线型的演化来判断这种高效量子结构的存在。本发明方法操作简便,无破坏性;不仅可以明确多量子阱外延层中的量子结构,及时推进生产工艺的改进;还可对其在工作电流下发光效率的高低进行预测,有利于器件产品的应用分级,对于产品升级换代、降低成本和提高生产效率都具有重要意义。
-
公开(公告)号:CN101109724A
公开(公告)日:2008-01-23
申请号:CN200710044935.X
申请日:2007-08-16
Applicant: 中国科学院上海技术物理研究所
Abstract: 本发明提供一种检测InGaN/GaN多量子阱发光二极管内部量子点密度大小的方法。由于InGaN/GaN多量子阱发光二极管为InGaN量子点发光,那么,其内部量子点密度的大小就决定了其发光性能的优劣。本发明根据InGaN/GaN多量子阱发光二极管开启电压随其内部量子点密度增大而逐渐增大的变化关系,通过测量其开启电压的大小来判定其内部量子点密度的大小。在保证电极为欧姆接触的情况下,发光二极管的开启电压越大,其内部量子点密度也就越高。本发明可以简单方便的确定InGaN/GaN多量子阱发光二极管内部量子点密度的相对大小,而且不会造成浪费,对于寻找最优化的生长条件,提高发光二极管的发光效率和节约成本具有重要意义。
-
公开(公告)号:CN100345248C
公开(公告)日:2007-10-24
申请号:CN200510025732.7
申请日:2005-05-11
Applicant: 华东师范大学 , 中国科学院上海技术物理研究所
CPC classification number: Y02P70/521
Abstract: 一种异质键合晶片的制备方法和应用,属光电子器材集成和应用的技术领域。低温直接键合的两片异质材料分别是制备有ROIC的硅晶片和制备有IP薄膜的GaAs晶片,先按照0.25μm ULSI中的铜互连的化学机械平坦化工艺,使所述的硅晶片表面光滑、平整、清洁;接着,在低温下,使表面同样光滑、平整、清洁的所述的GaAs晶片与所述的硅晶片对位、预键合、低温热处理,至所述的两个异质晶片直接键合在一起,得到异质键合物;然后减薄异质键合物GaAs的厚度至20~30μm;再用ICP高密度反应离子选择刻蚀剩余的GaAs至终止层;最后用湿法蚀去终止层,得到产品,异质键合晶片。异质键合晶片可用来制作低价格的IP-ROIC的IRFPA。本发明具有制造成本低、产品超高机械强度高、可靠性好等优点。
-
公开(公告)号:CN1996033A
公开(公告)日:2007-07-11
申请号:CN200610148065.6
申请日:2006-12-27
Applicant: 中国科学院上海技术物理研究所
IPC: G01R31/26 , G01R31/265 , G01R31/28 , G01R31/00 , H01L21/66
Abstract: 一种长波碲镉汞光伏器件物理参数的检测方法,包括步骤:S1、测量碲隔汞光伏器件的I-V曲线;S2、利用关系式R=dV/dI获得R-V曲线,S3、根据碲镉汞的暗电流模型拟合获得器件的物理参数,根据本发明将为碲镉汞长波器件分析提供新的途径。
-
公开(公告)号:CN108489923B
公开(公告)日:2020-08-07
申请号:CN201810089425.2
申请日:2018-01-30
Applicant: 中国科学院上海技术物理研究所
IPC: G01N21/3504 , G01J5/00
Abstract: 本发明公开了一种双敏感元信号差分红外气体成像焦平面及成像方法,焦平面由像元列阵芯片以及读出电路芯片组成,其中像元阵列芯片上的每个像元由两个敏感元A和B组合构成。其中敏感元B的响应峰位设计在待探测气体吸收较强的指纹波长处,敏感元A的响应峰位调制得错开该波长。A、B两敏感元的信号输出端与差分电路相连,差分电路作为读出电路输入级的一部分向读出电路输出差分信号。该信号与被探测气体在探测光路上的浓度和量成比例,利用读出电路输出该差值信号即可对所探测气体成像。本发明的优点:一、可直接消除背景辐射的影响;二、与气体成像相关的有效信号比例极高;三、积分电容不易饱和,有效信号动态范围大;四、可消除背景辐射噪声。
-
公开(公告)号:CN108489923A
公开(公告)日:2018-09-04
申请号:CN201810089425.2
申请日:2018-01-30
Applicant: 中国科学院上海技术物理研究所
IPC: G01N21/3504 , G01J5/00
Abstract: 本发明公开了一种双敏感元信号差分红外气体成像焦平面及成像方法,焦平面由像元列阵芯片以及读出电路芯片组成,其中像元阵列芯片上的每个像元由两个敏感元A和B组合构成。其中敏感元B的响应峰位设计在待探测气体吸收较强的指纹波长处,敏感元A的响应峰位调制得错开该波长。A、B两敏感元的信号输出端与差分电路相连,差分电路作为读出电路输入级的一部分向读出电路输出差分信号。该信号与被探测气体在探测光路上的浓度和量成比例,利用读出电路输出该差值信号即可对所探测气体成像。本发明的优点:一、可直接消除背景辐射的影响;二、与气体成像相关的有效信号比例极高;三、积分电容不易饱和,有效信号动态范围大;四、可消除背景辐射噪声。
-
公开(公告)号:CN103107230B
公开(公告)日:2015-09-16
申请号:CN201110358927.9
申请日:2011-11-14
Applicant: 常州光电技术研究所 , 中国科学院上海技术物理研究所
IPC: H01L31/101 , H01L31/0248 , G01J1/42
Abstract: 本发明公开了一种量子阱太赫兹探测器,该探测器由多量子阱芯片和超导磁体系统组成。通过施加外加磁场,对多量子阱芯片势垒层中施主能级与势阱层中子带能级间相互作用进行有效调控,导致电子从势阱层中基态子带能级向势垒层中施主能级转移,并利用势垒层中施主能级间的电子跃迁来探测入射THz辐射。本发明在外加磁场增加到临界磁场Bc以后,由于利用了施主能级间的电子跃迁来进行THz探测,本发明的量子阱太赫兹探测器不需要光栅耦合或45度磨角耦合,能在正入射条件下吸收响应THz辐射,克服了传统量子阱结构探测器原理上导致的缺点,大幅度提高了响应度。
-
公开(公告)号:CN104538482A
公开(公告)日:2015-04-22
申请号:CN201410748129.0
申请日:2014-12-09
Applicant: 中国科学院上海技术物理研究所
IPC: H01L31/101 , H01L31/0304
CPC classification number: H01L31/101 , H01L31/0236 , H01L31/0304 , H01L31/035209
Abstract: 本发明公开了一种微管谐振腔量子阱红外探测器,自下而上依次包括:衬底、缓冲层、牺牲层、金属下电极、金属上电极、螺旋管状的功能薄膜层,其中,螺旋管状功能薄膜层由应力层、下电极层、腐蚀阻挡层、量子阱层、减薄层组成。本发明将量子阱内嵌在微管的管壁中,利用谐振腔的共振原理,将入射光限制在管壁中并沿其传播从而被量子阱吸收。本发明的优点:一、光耦合能力强,能够将入射光限制在管壁中形成共振增强,从而提高量子阱的吸收,改善器件灵敏度和量子效率;二、更宽的探测视角,微管的螺旋结构能够接受180°方向内入射光;三、微管的直径可调性,便于用户设计,简单的腐蚀即可获得不同直径微管以满足器件不同探测波长需求。
-
公开(公告)号:CN103762220A
公开(公告)日:2014-04-30
申请号:CN201410021014.1
申请日:2014-01-17
Applicant: 中国科学院上海技术物理研究所
IPC: H01L27/146
Abstract: 本发明公开了一种等离激元微腔耦合结构的高线性偏振度量子阱红外探测器,该探测器由上层金属线条形成的金属光栅层、量子阱红外光电转换激活层和下层金属反射层组成。本发明的优点是:1.利用上层金属光栅与下层金属反射层之间等离激元共振所形成的电磁波近场耦合微腔的模式选择效应,使得能够进入到微腔的光子以那些能够与探测波长偏振模式形成共振的光子为主。2.进入到微腔中的光子其电矢量方向在微腔模式的调制下由x方向改变为z方向,能够被量子阱子带跃迁吸收形成光电转换过程。由于以上特点,本发明的偏振耦合结构能够极大地提高偏振响应的消光比,使探测器具有极高的偏振分辨能力。
-
-
-
-
-
-
-
-
-