一种高强Al-Cu-Mg-Mn铝合金及其制备方法

    公开(公告)号:CN111996426B

    公开(公告)日:2021-11-23

    申请号:CN202010891335.2

    申请日:2020-08-30

    Applicant: 中南大学

    Abstract: 本发明公开了一种高强Al‑Cu‑Mg‑Mn铝合金及其制备方法,涉及铝合金领域,按重量百分比,包括以下成分:Si:≤0.5%,Fe:≤0.5%,Cu:4.5‑6.3%,Mg:0.6‑1.2%,Mn:0.6‑1.5%,Sc:0.15‑0.35%,Zr:0.1‑0.2%,Y:0.1‑0.3%,余量为铝及不可除杂质。制备方法为:熔炼、精炼除杂除气、浇注、均匀化热处理、三维大变形锻造预变形、等温变形加工、热处理。所用铸造模具为金属模具作为内模、环绕冷却管,砂型模具作为外模的特殊组合模具,制备得到高质量、高性能铸件;所述热处理为固溶处理+梯度时效处理。本发明所制备的Al‑Cu‑Mg‑Mn铝合金,强度大于520MPa,伸长率为12‑16%,在强度提高的同时,实现了伸长率的提升。本发明方法简单,在高强铝合金领域具有重要的价值。

    一种制备纳米球形氧化物弥散强化相的方法

    公开(公告)号:CN112170854A

    公开(公告)日:2021-01-05

    申请号:CN202011097004.8

    申请日:2020-10-14

    Applicant: 中南大学

    Abstract: 本发明涉及一种制备纳米球形氧化物弥散强化相的方法,首次提出采用微米氧化物制备纳米球形氧化物强化相。首先,以微米氧化物为原料,采用分阶段机械球磨的方法,制备具有完全非晶态结构的纳米氧化物/基体合金复合粉末。本发明第一阶段球磨,使氧化物发生破碎和结构转变,实现纳米化和完全非晶化,制备得到完全非晶态结构纳米氧化物在基体合金粉末中均匀分布的复合粉末;第二阶段,将第一阶段获得的复合粉末与剩余基体合金粉末球磨混合均匀。然后,所制备的粉末依次经热成形、热轧制和热处理,得到纳米球形氧化物弥散强化合金。本发明可以显著提高氧化物相的弥散强化效果,明显改善合金的室温以及高温力学性能。本发明方法简单、生产效率高,所制备合金性能优异,合金的强度和塑性明显优于同类型合金。

    一种消除3D打印镍基高温合金裂纹的方法

    公开(公告)号:CN112011713A

    公开(公告)日:2020-12-01

    申请号:CN202010891045.8

    申请日:2020-08-30

    Applicant: 中南大学

    Abstract: 本发明提供一种消除3D打印镍基高温合金裂纹的方法,属于高温合金增材制造技术领域。针对γ′相沉淀强化镍基高温合金3D打印易产生裂纹的问题,本发明首次提出通过适量稀土进行稀土微合金化,降低γ′相沉淀强化镍基高温合金3D打印开裂敏感性,扩宽3D打印工艺窗口,抑制3D打印裂纹的产生,大幅提高成形件的强度和塑性,有效预防工序间存放开裂、后续热处理开裂等后续加工过程中裂纹的形成。使用该方法制备的γ′相沉淀强化镍基高温合金René104未见裂纹,致密度超过99.4%,屈服强度和抗拉强度分别达到了935MPa和1256MPa,伸长率超过14.0%。

    一种高强Al-Cu-Mg-Mn铝合金及其制备方法

    公开(公告)号:CN111996426A

    公开(公告)日:2020-11-27

    申请号:CN202010891335.2

    申请日:2020-08-30

    Applicant: 中南大学

    Abstract: 本发明公开了一种高强Al-Cu-Mg-Mn铝合金及其制备方法,涉及铝合金领域,按重量百分比,包括以下成分:Si:≤0.5%,Fe:≤0.5%,Cu:4.5-6.3%,Mg:0.6-1.2%,Mn:0.6-1.5%,Sc:0.15-0.35%,Zr:0.1-0.2%,Y:0.1-0.3%,余量为铝及不可除杂质。制备方法为:熔炼、精炼除杂除气、浇注、均匀化热处理、三维大变形锻造预变形、等温变形加工、热处理。所用铸造模具为金属模具作为内模、环绕冷却管,砂型模具作为外模的特殊组合模具,制备得到高质量、高性能铸件;所述热处理为固溶处理+梯度时效处理。本发明所制备的Al-Cu-Mg-Mn铝合金,强度大于520MPa,伸长率为12-16%,在强度提高的同时,实现了伸长率的提升。本发明方法简单,在高强铝合金领域具有重要的价值。

    一种高强Al-Zn-Mg-Cu铝合金及其制备方法

    公开(公告)号:CN111996425A

    公开(公告)日:2020-11-27

    申请号:CN202010891268.4

    申请日:2020-08-30

    Applicant: 中南大学

    Abstract: 本发明公开了一种高强Al-Zn-Mg-Cu铝合金及其制备方法,涉及铝合金领域,按重量百分比,包括以下成分:Si:≤0.5%,Fe:≤0.5%,Zn:5.0-7.0%,Cu:2.0-3.0%,Mg:1.5-3.0%,Sc:0.15-0.35%,Zr:0.1-0.2%,Y:0.1-0.3%,余量为铝及不可除杂质。制备方法为:熔炼、模具、精炼除杂除气、浇注、均匀化热处理、三维大变形锻造预变形、等温变形加工、热处理。所用铸造模具为金属模具作为内模、环绕冷却管,砂型模具作为外模的特殊组合模具,制备得到高质量、高性能铸件;所述热处理为固溶处理+梯度时效处理。本发明所制备的Al-Zn-Mg-Cu铝合金,强度达650MPa,伸长率为10-13%,在强度提高的同时,实现了伸长率的提升,提高了使用寿命,在高强铝合金领域具有重要的价值。

    一种消除金属材料增材制造裂纹提高力学性能的方法

    公开(公告)号:CN108994304B

    公开(公告)日:2019-07-26

    申请号:CN201810846735.4

    申请日:2018-07-27

    Applicant: 中南大学

    Abstract: 本发明提供一种消除金属材料增材制造裂纹提高力学性能的方法,属于增材制造技术领域。本发明对增材制造成形件依次进行去应力退火和放电等离子烧结处理;所述去应力退火为:在保护气氛中,升温至退火温度,保温;所述退火温度为(0.3‑0.4)T再;所述放电等离子烧结的温度为(0.8‑0.9)T再,时间为10~20min。本发明对于增材制造的金属依次采用了特定参数的去应力退火、特定参数的SPS烧结,不仅消除了产品的裂纹,还实现了力学性能的大幅度提高。

    一种用于3D打印的纳米陶瓷金属复合粉末及应用

    公开(公告)号:CN111940723B

    公开(公告)日:2022-11-25

    申请号:CN202010891040.5

    申请日:2020-08-30

    Applicant: 中南大学

    Abstract: 本发明提供一种用于3D打印的纳米陶瓷金属复合粉末及应用,以金属材料为基体,以陶瓷颗粒作为增强相。采用微米级TiC、TiB2、WC、SiC、CrC、A12O3、Y2O3、TiO2中的一种或多种陶瓷颗粒作为原料,添加陶瓷颗粒的质量百分比为0.5~10.0%,通过特定的球磨工艺、等离子球化、气流分级以及筛分,得到球形度高、流动性好、粒度范围窄的纳米陶瓷均匀分布的金属复合粉末,满足3D打印技术对粉末较高的要求;通过3D打印技术制备纳米陶瓷增强的金属复合材料。所制备的金属复合材料,纳米陶瓷相分布均匀,具有优异的力学性能。采用微米级陶瓷颗粒,通过纳米化实现均匀分散,成本低;可以一体成形制备任意复杂形状的零件,提高材料利用率。

    一种铝合金铸件的制备方法

    公开(公告)号:CN111961896B

    公开(公告)日:2022-02-11

    申请号:CN202010957103.2

    申请日:2020-09-12

    Applicant: 中南大学

    Abstract: 本发明公开了一种铝合金铸件的制备方法,涉及铝合金领域。针对目前铝合金砂模铸造组织粗大、容易夹砂以及金属模铸造操作困难的问题,本发明提出采用金属模具作为内模、环绕冷却管,砂型模具作为外模的特殊组合模具,对所配原料进行熔炼、精炼除渣除气、浇注,制备得到高质量、高性能铸件。由于金属内模的导热性能好、冷却速度快,显著降低铝合金成型件的晶粒尺寸,通过冷却水、砂型外模调控熔体凝固速率,所制备的铝合金铸件组织致密、晶粒尺寸小、成分均匀,扩大中心等轴晶区,性能优于砂型模具、金属模具制备的铸件,方法简单,成本低,在铝合金制备领域具有重要的价值。

Patent Agency Ranking