用于对抗深度学习的无线电信号伪造方法

    公开(公告)号:CN112865915B

    公开(公告)日:2022-07-12

    申请号:CN202110005855.3

    申请日:2021-01-05

    Abstract: 本发明提供了一种用于对抗深度学习的无线电信号伪造方法,解决了人工智能与电子对抗技术领域,基于深度学习的信号分类器难以对抗的技术问题。实现包括:对调制后的无线电信号随机生成候选对抗信号,将候选对抗信号作为初始父代种群,通过基于视觉限制的差分进化方法生成信号干扰方案集;采用基于深度学习的无线电信号分类器评估获得干扰信号和对抗信号,完成对抗信号伪造。本发明伪造的信号和原无线电信号具有极高的相似性,有效对抗基于深度学习的信号分类器,降低无线电信号调制类型分类精度。本发明伪造的信号在干扰信号未知的情况下,基本不影响无线电信号内容理解。用于军事领域电子对抗,防止无线电信号调制类型被识别。

    基于多尺度卷积神经网络的无线电信号调制识别方法

    公开(公告)号:CN107979554B

    公开(公告)日:2019-10-08

    申请号:CN201711144077.6

    申请日:2017-11-17

    Abstract: 本发明公开一种基于多尺度卷积神经网络的无线电信号调制识别算法,其实现步骤为:(1)生成处理后的无线电调制信号;(2)生成二维时频图,对信号的瞬时相关函数作傅里叶变换得到信号的维格纳‑威利时频分布图;(3)对时频分布图进行预处理,生成训练样本集和测试样本集;(4)构建多尺度卷积神经网络模型并进行训练;(5)使用训练好的网络模型对测试集进行测试,计算正确率,获得识别准确率,评估网络性能。本发明具有普适性强,不需要人工特征提取和大量先验知识,复杂度低,分类结果准确、稳定的优点,可用于信号分类识别技术领域中。

    基于深度学习的宽带信号参数估计方法

    公开(公告)号:CN112784690B

    公开(公告)日:2022-12-27

    申请号:CN202011623078.0

    申请日:2020-12-31

    Abstract: 本发明公开了一种基于深度学习的宽带信号参数估计方法,基于YOLOv4网络和灰度时频图实现宽带特定信号的检测和识别,并对检测结果进一步计算和更新得到每个检测到宽带信号的估计参数,克服了现有方法检测识别精度低、参数估计不准、适用类型少且严重依赖专家先验等问题。本发明主要包括以下步骤:(1)生成宽带特定信号训练集;(2)训练YOLOv4网络;(3)对宽带信号灰度时频图进行检测识别;(4)计算检测识别到的每个宽带特定信号的参数;(5)对宽带特定信号的参数进行判断;(6)更新宽带特定信号参数。本发明具有宽带特定信号检测识别精度高、参数估计准和方法普适等优点,可用于无线电检测和侦查中对宽带信号进行分析。

    用于对抗深度学习的无线电信号伪造方法

    公开(公告)号:CN112865915A

    公开(公告)日:2021-05-28

    申请号:CN202110005855.3

    申请日:2021-01-05

    Abstract: 本发明提供了一种用于对抗深度学习的无线电信号伪造方法,解决了人工智能与电子对抗技术领域,基于深度学习的信号分类器难以对抗的技术问题。实现包括:对调制后的无线电信号随机生成候选对抗信号,将候选对抗信号作为初始父代种群,通过基于视觉限制的差分进化方法生成信号干扰方案集;采用基于深度学习的无线电信号分类器评估获得干扰信号和对抗信号,完成对抗信号伪造。本发明伪造的信号和原无线电信号具有极高的相似性,有效对抗基于深度学习的信号分类器,降低无线电信号调制类型分类精度。本发明伪造的信号在干扰信号未知的情况下,基本不影响无线电信号内容理解。用于军事领域电子对抗,防止无线电信号调制类型被识别。

    基于多尺度卷积神经网络的无线电信号调制识别方法

    公开(公告)号:CN107979554A

    公开(公告)日:2018-05-01

    申请号:CN201711144077.6

    申请日:2017-11-17

    Abstract: 本发明公开一种基于多尺度卷积神经网络的无线电信号调制识别算法,其实现步骤为:(1)生成处理后的无线电调制信号;(2)生成二维时频图,对信号的瞬时相关函数作傅里叶变换得到信号的维格纳-威利时频分布图;(3)对时频分布图进行预处理,生成训练样本集和测试样本集;(4)构建多尺度卷积神经网络模型并进行训练;(5)使用训练好的网络模型对测试集进行测试,计算正确率,获得识别准确率,评估网络性能。本发明具有普适性强,不需要人工特征提取和大量先验知识,复杂度低,分类结果准确、稳定的优点,可用于信号分类识别技术领域中。

Patent Agency Ranking