图像分类模型训练方法、图像分类方法及相关装置

    公开(公告)号:CN114972791A

    公开(公告)日:2022-08-30

    申请号:CN202210626206.X

    申请日:2022-06-02

    Abstract: 本发明的实施例提供了一种图像分类模型训练方法、图像分类方法及相关装置,涉及图像处理领域。首先,获取原始图像及原始图像的类型标签;将原始图像输入预先构建的图像分类模型,图像分类模型包括特征提取网络和类型预测网络,特征提取网络包括N个依次串联的卷积层;再利用特征提取网络对原始图像进行特征提取,得到第N个所述卷积层输出的第一特征图和第N‑1个卷积层输出的第二特征图;基于第一特征图、类型标签和预设的多个二值掩码,生成第一训练集,基于第二特征图、类型标签和多个二值掩码,生成第二训练集;最后,利用第一训练集和第二训练集对类型预测网络进行训练,得到训练后的图像分类模型,从而减少模型训练过程产生的额外开销。

    基于混合损失函数扩散模型的增强CT图像生成方法及装置

    公开(公告)号:CN118379208B

    公开(公告)日:2024-10-29

    申请号:CN202410816691.6

    申请日:2024-06-24

    Abstract: 本发明公开了一种基于混合损失函数扩散模型的增强CT图像生成方法及装置,该方法包括:采集CT图像数据及其配对的造影剂增强CT图像数据,并采用数据增强方法和面向数据的正则化方法对其进行预处理,以按比例划分为训练集、测试集和验证集;构建用于生成造影剂增强CT图像的扩散模型;使用训练集对扩散模型进行迭代训练,基于混合损失函数调整扩散模型的参数,以获取训练好的扩散模型;将测试集中的CT图像数据输入至训练好的扩散模型中,得到对应的造影剂增强CT图像数据。本发明能够生成清晰可靠的造影剂增强CT图像,能够更好地捕捉数据分布的特征,提高了对不同特征的感知能力,增强了合成图像的质量,提高了模型的泛化性。

    一种低剂量CT图像去噪方法
    15.
    发明公开

    公开(公告)号:CN117196987A

    公开(公告)日:2023-12-08

    申请号:CN202311187498.2

    申请日:2023-09-14

    Abstract: 本发明公开了一种低剂量CT图像去噪方法,包括以下步骤:S1:建立数据集,设定带有噪声的LDCT图像集合x,和与LDCT图像集合x对应的高质量的NDCT图像集合y;S2:搭建参数为θ的去噪模型 使用模构建 的映射;S3:使用混合损失训练去噪模型 设置学习率和动量参数,采用误差反向传播训练去噪模型 达到迭代最大次数,生成训练好的去噪模型;S4:图像去噪;将测试集中的LDCT图像预处理后,输入至训练好的去噪模型,得到对应的去噪后图像,本申请提出的去噪方法考虑到了图像不同区域的去噪难度,通过添加权重的方式对其进行自适应平衡,并通过高频信息损失促进图像纹理细节的生成,避免去噪后图像变得过度平滑。

    基于深度学习的术中肺恶性肿瘤热消融疗效预测的方法

    公开(公告)号:CN117174301A

    公开(公告)日:2023-12-05

    申请号:CN202310569396.0

    申请日:2023-05-19

    Abstract: 本发明公开了基于深度学习的术中肺恶性肿瘤热消融疗效预测的方法,其特征在于,包括获得热消融CT图像;在热消融CT图像上感兴趣区域及感兴趣区域图像;将持续获得的热消融CT图像批量转换为jpg格式的图像,将感兴趣区域图像与热消融图像相结合,得到高亮感兴趣区域的CT图像,收集多名患者的热消融CT图像和高亮感兴趣区域的CT图像,进行剪裁得到分割图像;将分割图像输入深度残差网络,得到输出特征;对输出特征使用归一化指数函数后,得到分类概率,根据分类概率得到肺癌热消融的预测结果;在测试平台上进行测试,最终得到训练完成的深度残差神经网络模型。将患者的病灶CT图像输入训练完成的深度残差神经网络模型后,得出肺癌热消融预测效果。

    基于深度学习构建肾透明细胞癌分级模型的方法

    公开(公告)号:CN116664523A

    公开(公告)日:2023-08-29

    申请号:CN202310642810.6

    申请日:2023-06-01

    Abstract: 本发明公开了基于深度学习构建肾透明细胞癌分级模型的方法,包括获取肾透明癌细胞患者的CT图像;CT图像进行切割,获得切割图像;对切割图像进行旋转生成操作并标注,基于RegNetY400MF、RegNetY800MF、SE‑ResNet50和ResNet101四类网络模型,以普通交叉熵为损失函数,使用旋转后的切割图像对四类网络模型进行预训练;在普通的交叉熵中加入噪声修正策略作为损失函数,对经过预训练的四类网络模型进行实际训练;实际训练完成后的四类网络模型基于输出概率最大的CT图像对患者的病理进行诊断,获得四类网络模型的表现AUC;以四类网络模型的表现AUC作为其权重,对患者的最终诊断进行加权计算,得到其最终诊断,本申请实现了更有效的模型集成,达到了更好的最终预测准确度。

    基于混合损失函数扩散模型的增强CT图像生成方法及装置

    公开(公告)号:CN118379208A

    公开(公告)日:2024-07-23

    申请号:CN202410816691.6

    申请日:2024-06-24

    Abstract: 本发明公开了一种基于混合损失函数扩散模型的增强CT图像生成方法及装置,该方法包括:采集CT图像数据及其配对的造影剂增强CT图像数据,并采用数据增强方法和面向数据的正则化方法对其进行预处理,以按比例划分为训练集、测试集和验证集;构建用于生成造影剂增强CT图像的扩散模型;使用训练集对扩散模型进行迭代训练,基于混合损失函数调整扩散模型的参数,以获取训练好的扩散模型;将测试集中的CT图像数据输入至训练好的扩散模型中,得到对应的造影剂增强CT图像数据。本发明能够生成清晰可靠的造影剂增强CT图像,能够更好地捕捉数据分布的特征,提高了对不同特征的感知能力,增强了合成图像的质量,提高了模型的泛化性。

Patent Agency Ranking