建立风险识别模型的方法及对应装置

    公开(公告)号:CN115293872A

    公开(公告)日:2022-11-04

    申请号:CN202210793704.3

    申请日:2022-07-07

    Abstract: 本说明书实施例提供了一种建立风险识别模型的方法及对应装置。其中方法包括:获取利用用户的网络行为数据构建的异构网络图,异构网络图包括节点和边,节点包括行为主体和行为对象,边依据行为主体和行为对象之间的行为关系确定;对异构网络图中的边进行掩膜处理,得到掩膜子图和剩余子图;利用剩余子图和掩膜子图训练图自编码器;其中,图自编码器包括编码网络和第一解码网络;编码网络利用输入的剩余子图得到各节点的表征向量,第一解码网络利用各节点的表征向量预测被掩膜的边,训练目标包括:最小化预测结果与掩膜子图之间的差异;利用训练得到的图自编码器中的编码网络,构建风险识别模型。本申请能够提高风险识别模型的识别效果。

    建立风险识别模型的方法及对应装置

    公开(公告)号:CN115293235A

    公开(公告)日:2022-11-04

    申请号:CN202210788668.1

    申请日:2022-07-06

    Abstract: 本说明书实施例提供了一种建立风险识别模型的方法及对应装置。其中方法包括:获取利用用户的网络行为数据构建的异构网络图对应的图邻接矩阵,异构网络图包括节点和边,节点包括行为主体和行为对象,边依据行为主体和行为对象之间的行为关系确定;利用图邻接矩阵生成训练样本,以及对图邻接矩阵的特征值和/或特征向量进行扰动生成对抗样本;利用训练样本和对抗样本训练图神经网络,得到风险识别模型;其中训练目标包括:最小化图神经网络针对训练样本和对抗样本中的样本对象输出的识别结果与该样本对象被标注的标签之间的差异,样本对象包括节点或边。本申请能够有效提高风险识别模型的鲁棒性。

Patent Agency Ranking