-
公开(公告)号:CN109191378A
公开(公告)日:2019-01-11
申请号:CN201810830164.5
申请日:2018-07-25
Applicant: 成都信息工程大学
IPC: G06T3/40
Abstract: 本发明涉及一种基于ERGAN网络单幅图像超分辨重建方法。本发明包括以下步骤:输入待重建图像I;将待重建图像I分为大小为m*m的图像块集合,每一个图像块用 表示,i=1,2,...,s;将 处理成n*n大小的低分辨率图像 将低分辨率图像 输入到生成器G中进行训练;将生成器G输出的结果G(z)和 一同输入到鉴别器D中;将需要重建的图像再经过生成器G网络超分辨重建。本发明提出了基于生成对抗网络,增强对称残差单位的单图像超分辨率(ERGAN),在训练的过程中保留了高频特征,减轻深层网络训练的难度。
-
公开(公告)号:CN110633734B
公开(公告)日:2022-08-19
申请号:CN201910776915.4
申请日:2019-08-22
Applicant: 成都信息工程大学
IPC: G06K9/62 , G06V10/764 , G06V10/774 , G06V10/762
Abstract: 本发明公开了一种基于图论相关理论进行异常检测的方法,包括该方法具体包括以下步骤:第一步,将原始数据集进行聚类操作,将数据集分割成不同的簇;第二步,计算出原始数据集的均值密度,将原数据集均值密度作为阈值与簇密度比较对数据集进行精简;第三步,对数据集进行特征提取和空间距离计算并对结果进行数据化操作第四步,将有效检测的数据簇的所有数据点按计算出来的权重值分配构建无向连通图;第五步,采用弗洛伊德算法查找相应簇的最短路径。在对于数据集的预处理上,本发明采取了二次精简数据集的办法,以不同的基准信息来对数据集进行降维操作,可以有效地减少大量无用数据集,极大程度的减少了异常检测过程的时间复杂度和空间复杂度。
-
公开(公告)号:CN109409508B
公开(公告)日:2022-03-15
申请号:CN201811310962.1
申请日:2018-11-06
Applicant: 成都信息工程大学
Abstract: 本发明属于图像重建技术领域,公开了一种基于生成对抗网络使用感知损失解决模型崩塌的方法,利用随机向量z生成与实际数据分布相似的图像,在训练的过程中采用感知损失将z和真实数据映射到特征空间中来提取更高层次的特征,并结合对抗损失来鼓励生成网络产生与实际图像相似的图像样本;最后,使得鉴别器不能判断这是一个虚假图像。本发明针对已有网络采用较小的数据集解决了模型崩塌问题,VGG‑GAN在两个小场景数据集上进行评价;实验结果表明,用VGG‑GAN方法生成的图像质量优于现有方法。
-
公开(公告)号:CN109063710A
公开(公告)日:2018-12-21
申请号:CN201810907208.X
申请日:2018-08-09
Applicant: 成都信息工程大学
CPC classification number: G06K9/342 , G06K2209/05 , G06N3/0454
Abstract: 本发明涉及图像分割领域中的鼻咽部肿瘤图像分割技术,具体的说是一种基于多尺度特征金字塔的3D CNN鼻咽癌分割方法。针对训练样本,需要由有经验的放射科肿瘤医师对若干鼻咽癌病例进行标注,使用整个三维MRI图像建立数据集,并对数据集进行一定的预处理,然后用网络对训练数据集进行训练,取得高精度的分割模型。对于新的病例,可以用该分割模型分割其MRI图像。相对传统的方法,除了训练阶段需要人工标注外,其余部分均可实现自动处理,大大降低对于有经验医师的需求,且与五种主流网络对比能取得较高的精度。
-
-
-