-
公开(公告)号:CN109409508B
公开(公告)日:2022-03-15
申请号:CN201811310962.1
申请日:2018-11-06
Applicant: 成都信息工程大学
Abstract: 本发明属于图像重建技术领域,公开了一种基于生成对抗网络使用感知损失解决模型崩塌的方法,利用随机向量z生成与实际数据分布相似的图像,在训练的过程中采用感知损失将z和真实数据映射到特征空间中来提取更高层次的特征,并结合对抗损失来鼓励生成网络产生与实际图像相似的图像样本;最后,使得鉴别器不能判断这是一个虚假图像。本发明针对已有网络采用较小的数据集解决了模型崩塌问题,VGG‑GAN在两个小场景数据集上进行评价;实验结果表明,用VGG‑GAN方法生成的图像质量优于现有方法。
-
公开(公告)号:CN109409508A
公开(公告)日:2019-03-01
申请号:CN201811310962.1
申请日:2018-11-06
Applicant: 成都信息工程大学
Abstract: 本发明属于图像重建技术领域,公开了一种基于生成对抗网络使用感知损失解决模型崩塌的方法,利用随机向量z生成与实际数据分布相似的图像,在训练的过程中采用感知损失将z和真实数据映射到特征空间中来提取更高层次的特征,并结合对抗损失来鼓励生成网络产生与实际图像相似的图像样本;最后,使得鉴别器不能判断这是一个虚假图像。本发明针对已有网络采用较小的数据集解决了模型崩塌问题,VGG-GAN在两个小场景数据集上进行评价;实验结果表明,用VGG-GAN方法生成的图像质量优于现有方法。
-