一种面向热害职业危害的健康智能监测方法、设备及存储介质

    公开(公告)号:CN115717909B

    公开(公告)日:2023-06-13

    申请号:CN202211461658.3

    申请日:2022-11-17

    Applicant: 复旦大学

    Abstract: 本发明属于健康智能监测技术领域,具体公开一种面向热害职业危害的健康智能监测方法、设备及存储介质,该面向热害职业危害的健康智能监测方法包括环境信息采集、环境信息分析、人员基本信息采集、人员散热分析、人员温度采集、人员散热平衡分析、人员温度分析、人员作业安全分析和危险预警,通过对矿井下作业区域的环境信息进行采集和分析,进而对作业人员的着装情况和温度进行采集与分析,从而对作业人员的作业状态进行分析,解决了当前技术没有对作业人员的工作服装进行监测与分析的问题,实现了矿井下作业人员的安全状态监测与分析,有效的保障了作业人员的作业健康与安全,提高了作业人员的工作效率和效果同时也保障了矿井生产的安全。

    基于自适应多尺度Transformer优化的前列腺MRI影像分割方法及系统

    公开(公告)号:CN115272170A

    公开(公告)日:2022-11-01

    申请号:CN202210610244.6

    申请日:2022-05-31

    Applicant: 复旦大学

    Abstract: 本发明提供了一种基于自适应多尺度Transformer优化的前列腺MRI影像分割方法及系统,包括:步骤S1:获取前列腺MRI影像数据集;步骤S2:对数据集中MRI图像进行预处理,得到预处理之后的训练集与测试集;步骤S3:初始化网络中的参数,使用带有Transformer模块的网络结合在前列腺图像标注的前列腺器官区域进行训练,更新参数得到前列腺自动分割模型;步骤S4:将测试数据集的图像输入训练完成的网络中,得到每幅MRI图像的前列腺分割图像。本发明引入了自适应卷积自适应地调制卷积核全局互补信息,采用自适应Transformer模块来增强全局语义提取能力,提升了对前列腺MRI图像的分割效果。

    一种基于改进注意力模块的医疗影像分割方法及装置

    公开(公告)号:CN113793345A

    公开(公告)日:2021-12-14

    申请号:CN202111042489.5

    申请日:2021-09-07

    Abstract: 本发明公开了一种图像处理方法、装置、计算机设备及存储介质。该方法包括:获取目标图像的目标张量数据;将目标张量数据输入至目标神经网络模型,目标神经网络模型包括编码器、解码器和注意力模块;编码器用于根据目标张量数据进行降采样,得到第一特征矩阵;注意力模块用于根据第一特征矩阵进行空洞卷积,得到第二特征矩阵;根据第二特征矩阵确定原始注意力图;根据原始注意力图确定空洞注意力图;根据第一特征矩阵和空洞注意力图确定第三特征矩阵;将第三特征矩阵输出值解码器;解码器用于根据第三特征矩阵进行上采样,得到图像分割结果;根据目标神经网络模型的输出进行目标图像的分割反馈。能够提高图像分割的准确性。

    脑影像动脉全自动分割方法及装置

    公开(公告)号:CN112150477A

    公开(公告)日:2020-12-29

    申请号:CN201911118499.5

    申请日:2019-11-15

    Applicant: 复旦大学

    Abstract: 本发明提供一种脑影像动脉全自动分割方法及装置,能够对二维或是三维的待测脑影像进行自动的脑血管分割,其特征在于,包括:步骤S1,对待测脑影像进行图像增强;步骤S2,采用预先训练的机器学习分类器以及构建的子类‑参数对照表进行参数自适应选取;步骤S3,根据参数进行阈值分割;步骤S4,自适应颅骨种子点提取;步骤S5,根据参数进行颅骨去除;步骤S6,分析所有连通域的体积并根据参数进行连通域筛选;步骤S7,自适应阈值统计得出上下限阈值;步骤S8,根据上下限阈值区域增长;步骤S9,均匀扩展得到最后的图像分割结果。

Patent Agency Ranking