-
公开(公告)号:CN118023768A
公开(公告)日:2024-05-14
申请号:CN202410286415.3
申请日:2024-03-13
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种用于镍基单晶合金焊接的多组元高合金含量镍基焊料,其组分及其质量百分比为:Co 18%‑34%,Cr 18%‑22%,W 4%‑11%,Fe 4%‑11%,Al 1%‑4.0%,B 2.5%‑3.2%,Si≤1.5%,Ti≤2.0%,其他元素≤1.0%,余量为Ni。采用本发明的技术方案的焊料获得的镍基单晶焊接接头,无低熔点共晶存在,力学稳定性更加出色,耐高温能力更强,接头高温强度有显著的提升,接头在室温和870℃下的抗拉强度达到800MPa以上,达到镍基单晶母材的80%以上。
-
公开(公告)号:CN111618314B
公开(公告)日:2023-01-03
申请号:CN202010412418.9
申请日:2020-05-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种基于声化学的纳米银包铜焊料的制备方法,其包括以下步骤:将铜盐的有机溶剂溶液和亚磷酸钠与保护剂的有机溶剂溶液混合,并对该溶液施加径直向下的喇叭式脉冲超声波,加热反应得到铜纳米颗粒分散液,冷却,离心、洗涤,得到Cu纳米颗粒;将Cu纳米颗粒和还原剂加入到去离子水中混合均匀,在30~50℃下,加入银盐溶液反应,得到银包铜纳米颗粒分散液,将银包铜纳米颗粒分散液进行离心、洗涤,得到银包铜纳米颗粒;将银包铜纳米颗粒与焊膏用有机溶剂混合均匀,得到银包铜纳米颗粒焊膏。本发明的技术方案制备的银包铜纳米颗粒焊料,可靠性高,具有低温连接,高温服役特点,且制备过程中无需保护气体、工艺简单、绿色环保。
-
公开(公告)号:CN111715993B
公开(公告)日:2022-06-28
申请号:CN202010285936.9
申请日:2020-04-13
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种纳米颗粒驱动低能量超声金属焊接的方法,其包括:准备纳米颗粒膏或粉;在上下层待焊金属的待焊接面覆上1‑50μm厚的纳米颗粒膏或粉,然后在室温或加热的条件下进行超声波焊接。采用本发明的技术方案,综合超声焊接过程中粗糙表面峰处的传统固相连接,以及与间隙处纳米颗粒的尺寸效应、摩擦升温效应与缝隙填充效应,进而实现在更低的超声焊接输入能量下形成良好超声焊接接头,简化了生产工艺,降低了对待焊材料的影响,提高了焊缝密封性、焊接接头的力学性能和导电导热等性能。
-
公开(公告)号:CN119634742A
公开(公告)日:2025-03-18
申请号:CN202411468442.9
申请日:2024-10-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种抗氧化纳米铜粉及其制备方法、纳米铜焊膏,抗氧化纳米铜粉的制备方法包括如下步骤:将铜盐溶于溶剂中,加入可溶性金属氢氧化物,配制成前驱体溶液;其中,所述可溶性金属氢氧化物与铜盐的摩尔比为0.5‑3:1;将L‑抗坏血酸溶于溶剂中,在40~80℃下搅拌10~20min,冷却得到反应溶液;将前驱体溶液和反应溶液混合得到混合液,其中铜盐与L‑抗坏血酸的摩尔比为1:2‑4;将混合液加入到还原性醇中搅拌均匀,加热至155~195℃,并保温反应15min以上,将产物经洗涤、离心、干燥,得到抗氧化纳米铜粉。采用本发明的技术方案得到的纳米铜粉尺寸小,抗氧化,在空气中的稳定性好,实现芯片低温烧结互连,接头可靠性高。
-
公开(公告)号:CN118123161A
公开(公告)日:2024-06-04
申请号:CN202311551307.6
申请日:2023-11-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种无镀层超声辅助可伐合金的连接方法及精密器件,该连接方法包括:准备Sn‑Sb合金钎料片,并进行表面清洁;其中,所述Sn‑Sb合金钎料片的Sb含量为8‑12wt.%;对待连接器件和基板的可伐合金进行表面清洁;将清洁后的Sn‑Sb合金钎料片置于待连接的可伐合金之间,形成三明治封装结构,然后置于超声钎焊设备中,加热至260‑300℃,保温不超过10min后,施加超声能量场不超过60s,于空气中冷却,实现封装结构的连接。本发明的技术方案采用Sn‑Sb合金钎料作为中间连接层,辅以超声进行连接,抗蠕变性能优异,接头的组织性能更优,可靠性高,工艺简单,成本低。
-
公开(公告)号:CN117921252A
公开(公告)日:2024-04-26
申请号:CN202410286418.7
申请日:2024-03-13
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种用于镍基高温合金表面修复的镍基合金粉末焊料,其组分及其质量百分比为:Al 3‑5%、Cr 13‑15%、Fe 6‑8%、B 1.5‑2.5%、Co 6‑8%、W 1.5‑8%、Si0‑2%,余量由Ni和不可避免的杂质组成。本发明技术方案的镍基合金粉末的熔点得到显著提升,达到了1080℃~1280℃,粉末焊料的热力学稳定性更好,耐高温能力更强,用于涡轮叶片的焊接修复时,提升了焊接接头的力学性能和修复后叶片的可靠性。
-
公开(公告)号:CN116844983A
公开(公告)日:2023-10-03
申请号:CN202310818398.9
申请日:2023-07-05
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H01L21/603
Abstract: 本发明提供了一种可在空气条件下实现芯片低温固相连接的方法,包括如下步骤:步骤S1,对芯片和基板的表面进行清洗、干燥;步骤S2,在芯片的背面沉积一层纳米金属层;在基板沉积一层纳米金属层,所述纳米金属层为纳米Ag镀层或纳米Au镀层;步骤S3,将芯片置于基板上,并使芯片的纳米金属层与基板的纳米金属层相对,形成从上至下依次为芯片、芯片上纳米金属层、基板上纳米金属层、基板的封装结构;步骤S4,将装配好的封装结构放入热压扩散焊设备中在空气气氛下进行热压保温后,冷却至室温,完成互连,其中所述热压温度不超过300度。采用本发明的技术方案得到的接头互连界面结合良好,连接层致密无孔隙缺陷,导热性好,强度高。
-
公开(公告)号:CN112935267B
公开(公告)日:2023-06-20
申请号:CN202110133860.2
申请日:2021-02-01
Applicant: 哈尔滨工业大学(深圳)
IPC: B22F9/08
Abstract: 本发明提供了一种熔炼、气雾化制粉、烘粉和粉末筛分的一体化装置,其包括支架,所述支架从上至下依次设有真空熔炼雾化单元、过滤单元、可转动的烘粉单元、筛分单元和粉末收集容器;所述真空熔炼雾化单元包括密闭壳体,所述密闭壳体内设有熔炼模块和雾化模块,所述密闭壳体设有进料口、出料口、抽/进气接口、雾化通气入口、冷却介质入口;所述熔炼模块包括熔炼炉;所述雾化模块包括熔炼物料容器、雾化装置和可转动的冷却装置。采用本发明的技术方案,将熔炼雾化制粉的各功能集成于一体,避免现有装置制备的合金粉末在每道次工序转移中和空气的接触,降低了合金粉末中的氧含量,改善了合金粉末纯度,提高了制粉质量和制粉效率。
-
公开(公告)号:CN114058988B
公开(公告)日:2022-11-15
申请号:CN202111339654.3
申请日:2021-11-12
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明提供了一种使锻造态镍基粉末高温合金晶粒尺寸均匀化的热处理方法,其包括:步骤S1,将锻造态镍基粉末高温合金升温至550℃~650℃后进行保温;步骤S2,继续随炉升温至γ′相初溶温度,随后以0.1℃/min~1℃/min的升温速率缓慢升温至镍基粉末高温合金的γ′相完全固溶温度;步骤S3,以超过10℃/min的升温速度快速升温至镍基粉末高温合金的γ′相过固溶温度,保温一段时间后迅速冷却。采用本发明的技术方案,释放部分因锻造而形成的内应力,改善合金内部应力分布不均的同时,避免因快速升温使γ′相迅速溶解至基体中而造成晶粒尺寸异常的长大,保证了晶粒尺寸的均匀性。
-
公开(公告)号:CN115232957A
公开(公告)日:2022-10-25
申请号:CN202210888994.X
申请日:2022-07-27
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明公开了一种采用超声振动摩擦使高温合金表面形变强化的方法,具体工艺步骤如下:(1)、将两块待表面强化的高温合金分别通过夹头固定在超声振动设备上,使两高温合金块紧密接触,并在高温合金固定区外加感应加热线圈,进行加热并保温;(2)、通过超声探头施加垂直于高温合金的紧密接触面上的力和超声波,于高温下对高温合金进行振动摩擦处理;(3)、振动摩擦后撤出施加的应力与超声波,随后停止感应加热,让被振动摩擦后的高温合金自然冷却。本发明工艺简便,操作简单,通过该技术方案,可明显对镍基高温合金进行表面强化,强化后的合金表面粗糙度较低,并提高表面硬度。
-
-
-
-
-
-
-
-
-