-
公开(公告)号:CN114814593A
公开(公告)日:2022-07-29
申请号:CN202210466822.3
申请日:2022-04-29
Applicant: 哈尔滨工业大学(威海)
IPC: G01R31/367 , G06K9/62
Abstract: 本发明公开了基于闵氏距离和两步检测策略的电池组多故障诊断方法,包括以下步骤:S1、按照串‑并联交错电压测量设计布置传感器的位置,在不同的故障条件下,采集每个传感器测量的电压数据;S2、建立闵氏距离相似度计算公式;S3、根据闵氏距离相似度计算模型计算闵氏距离相似度,建立故障诊断策略;S4、建立基于阈值的能够区分出具有相似特征故障的隔离模型。本发明的有益效果在于:根据串‑并联电池组交错电压测量设计,可以有效地识别并定位出连接松脱故障、传感器故障和短路故障,无需复杂的电池模型,对数据依赖度低,计算量小。
-
公开(公告)号:CN113671380B
公开(公告)日:2024-07-16
申请号:CN202110968446.3
申请日:2021-08-23
Applicant: 哈尔滨工业大学(威海) , 威海天达汽车科技有限公司
IPC: G01R31/367
Abstract: 本发明提供一种基于深度学习的动力电池系统多故障诊断方法,包括故障检测和故障隔离两部分,故障检测针对电池故障早期预警问题,使用编码解码架构的深度学习模型,编码过去一段时间窗口内所测端电压、电流和温度序列,利用之后的电流和温度实测值解码出同步的端电压,与实测对比生成残差序列,经软阈值处理后由多级报警评估策略决定是否触发报警,该报警策略能消除误差波动,防止误报警。之后训练故障隔离深度学习模型,输入软阈值处理后的残差序列,隔离模型输出各故障是触发报警诱因的概率,进而隔离出各故障,从而简化了隔离各传感器故障类型的难度。
-