-
公开(公告)号:CN115322687A
公开(公告)日:2022-11-11
申请号:CN202211166135.6
申请日:2022-09-23
Applicant: 哈尔滨工业大学
Abstract: 一种高热导率磷酸盐基无机绝缘胶黏剂及其粘接方法,本发明涉及无机绝缘胶黏剂及其粘接方法。本发明要解决现有导热绝缘胶无法兼顾高导热、优绝缘、强粘接、低热膨胀性的同时满足。一种高热导率磷酸盐基无机绝缘胶黏剂,它由磷酸二氢铝溶液、固化剂及导热填料混合而成;粘接方法:将高热导率磷酸盐基无机绝缘胶黏剂分别涂覆于两块待粘接件表面,然后贴合,得到粘接件,在真空及室温条件下,粘接件静置,然后升温保温。本发明用于高热导率磷酸盐基无机绝缘胶黏剂及其粘接。
-
公开(公告)号:CN110629203B
公开(公告)日:2021-04-09
申请号:CN201910925317.9
申请日:2019-09-27
Applicant: 哈尔滨工业大学
IPC: C23C16/511 , C23C16/27 , C23C14/35 , C23C14/18 , C23C14/58 , C01B32/28 , G01N27/327 , G01N27/48
Abstract: 一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法及其检测葡萄糖的应用,它涉及一种多孔掺硼金刚石复合电极的制备方法及应用。本发明要解决现有不存在制备多孔掺硼金刚石复合电极的方法,现有利用掺硼金刚石电极非酶葡萄糖传感器检测葡萄糖灵敏度较低的问题。制备方法:一、掺硼金刚石薄膜的制备;二、溅射镀膜及退火处理。应用:用于检测葡萄糖。本发明用于具有双金属协同效应的多孔掺硼金刚石复合电极的制备及其检测葡萄糖的应用。
-
公开(公告)号:CN108229010B
公开(公告)日:2021-03-09
申请号:CN201711483712.3
申请日:2017-12-29
Applicant: 哈尔滨工业大学
Abstract: 一种基于XRD实验数据调整衬底和薄膜初始结构模型的结构参数的方法,它属于材料计算技术领域。本发明解决了衬底和薄膜结构模型预留距离过大影响几何优化过程的计算速度,以及可能无法模拟出最终能量最低的稳定结构的问题。本发明利用带有薄膜附件的X射线衍射仪对衬底和生长外延薄膜进行X射线小角衍射(SXRD)表征,得到衬底样品和薄膜样品的X射线小角衍射图谱,据此分别计算出衬底样品、薄膜样品、衬底样品与薄膜样品界面处原子层之间的晶面间距,然后利用上述晶面间距对利用Material Studio建立的初始结构模型的结构参数进行调整。本发明减少了几何优化步骤,大大缩短优化时间,同时有效避免计算过程陷入亚稳定结构陷阱,能够更准确地找到最终稳定结构。
-
公开(公告)号:CN108229010A
公开(公告)日:2018-06-29
申请号:CN201711483712.3
申请日:2017-12-29
Applicant: 哈尔滨工业大学
Abstract: 一种基于XRD实验数据调整衬底和薄膜初始结构模型的结构参数的方法,它属于材料计算技术领域。本发明解决了衬底和薄膜结构模型预留距离过大影响几何优化过程的计算速度,以及可能无法模拟出最终能量最低的稳定结构的问题。本发明利用带有薄膜附件的X射线衍射仪对衬底和生长外延薄膜进行X射线小角衍射(SXRD)表征,得到衬底样品和薄膜样品的X射线小角衍射图谱,据此分别计算出衬底样品、薄膜样品、衬底样品与薄膜样品界面处原子层之间的晶面间距,然后利用上述晶面间距对利用Material Studio建立的初始结构模型的结构参数进行调整。本发明减少了几何优化步骤,大大缩短优化时间,同时有效避免计算过程陷入亚稳定结构陷阱,能够更准确地找到最终稳定结构。
-
公开(公告)号:CN108165237A
公开(公告)日:2018-06-15
申请号:CN201810032016.9
申请日:2018-01-12
Applicant: 哈尔滨工业大学
IPC: C09K5/14
Abstract: 一种提高硅凝胶复合材导热性能的制备方法,本发明涉及聚合物基导热复合材料领域,具体涉及金刚石颗粒表面的磁性材料负载技术及外置磁场作用下填充体定向排布的聚合物基复合材料的制备方法。本发明要解决磁场作用下可控制备的定性排布金刚石/硅凝胶复合材料制备的技术问题。方法:先制备磁性材料负载的金刚石填充体颗粒;然后利用外置磁场对可磁性响应的金刚石颗粒进行定向排布以制备复合材料。本发明提出了定向排布的金刚石/硅凝胶复合材料的制备方法,对实际磁性负载的金刚石颗粒定向排布进行了表征,定向排布效果显著,提高了硅凝胶复合片材的热导率。
-
公开(公告)号:CN107749316A
公开(公告)日:2018-03-02
申请号:CN201710930415.2
申请日:2017-10-09
Applicant: 哈尔滨工业大学
IPC: G21H1/06
CPC classification number: G21H1/06
Abstract: 金刚石肖特基同位素电池及其制备方法,本发明属于微能源领域,它为了解决现有同位素电池的抗辐射损伤强度以及能量转换效率较低的问题。本发明金刚石肖特基同位素电池从上至下依次由放射源、电池肖特基电极、本征金刚石层和P型金刚石层形成叠层结构,在叠层结构的侧面设置欧姆电极。制备方法:一、在P型金刚石基底层上外延生长本征金刚石层;二、置于浓H2SO4和浓HNO3的混合溶液中;三、在本征金刚石层表面溅射肖特基电极;四、涂覆导电银胶;五、在肖特基电极上加载电镀放射源。本发明金刚石肖特基同位素电池中以Am作为放射源,其发出的阿尔法射线穿透深度低,且该金刚石肖特基同位素电池的输出功率能够达到皮瓦级,转换效率高。
-
公开(公告)号:CN106784044A
公开(公告)日:2017-05-31
申请号:CN201611223173.5
申请日:2016-12-26
Applicant: 哈尔滨工业大学
IPC: H01L31/0224 , H01L31/09 , H01L31/18
CPC classification number: H01L31/0224 , H01L31/09 , H01L31/1804
Abstract: 一种三维结构金刚石紫外探测器及其制备方法,涉及金刚石探测科学与技术领域,尤其涉及一种三维结构金刚石紫外探测器及其制备方法。本发明为解决现有金刚石紫外探测器,采用平面电极结构,会有紫外穿透深度范围以内金刚石纵向电场太弱不足以将光生载流子导出的问题,而采用石墨柱电极结构,会有晶界阻碍载流子的输运问题。一种三维结构金刚石紫外探测器,包含光感区和电极结构,光感区为蛇形折叠形状金刚石,电极结构为两组相互交叉的叉指结构凹槽组成,每组叉指结构含有n个电极。一种三维结构金刚石紫外探测器的制备方法:基底的选择;预处理;制备刻蚀掩膜;制备三维电极结构;沉积金属薄膜和后处理。本发明应用于紫外探测领域。
-
公开(公告)号:CN104947069A
公开(公告)日:2015-09-30
申请号:CN201510394176.4
申请日:2015-07-07
Applicant: 哈尔滨工业大学
Abstract: 一种制备金刚石微米棒阵列膜的方法,它涉及一种制备金刚石微米棒阵列膜的方法。本发明的目的是要解决目前金刚石微米棒阵列膜制备工艺复杂,制备成本较高,不能精确控制孔洞长径比的问题,本发明步骤为:硅片模板的制备、涂覆金刚石悬浮液、放置样品、金刚石微米棒阵列膜的生长、硅片模板的剥离,即完成。本发明利用多孔硅片模板代替AAO模板制备金刚石微米棒阵列膜,降低了薄膜的制备成本,简化了制备的工艺过程,通过调整硅片上孔洞的直径以及深度可以制备具有不同长径比的微米棒阵列,从而研究不同微米棒长径比对材料性能的影响。本发明应用于薄膜生长技术领域。
-
公开(公告)号:CN103817056A
公开(公告)日:2014-05-28
申请号:CN201410102374.4
申请日:2014-03-19
Applicant: 哈尔滨工业大学
IPC: B05D3/00
Abstract: 本发明公开了一种利用微喷涂和微圆角阻止脆性涂层裂纹扩展的涂层延寿方法,其步骤为“运输之前对涂层表面进行检测,如果发现涂层表面存在裂纹,则敲击裂纹尖端,在裂纹尖端产生微圆角:将零件或结构进行包装、运输;完成运输过程后,在零件或结构入库贮存前对涂层表面进行第二次检测,如果发现涂层表面存在裂纹,则进行微圆角处理后,将零件或结构入库贮存;在使用前进行第三次检测,如果发现裂纹扩展的现象,则在使用前利用微喷涂或微刷涂的方法填充裂纹。本发明可以及时了解涂层表面和内部裂纹的产生和扩展情况,有效地阻止涂层表面裂纹的扩展,修复涂层表面已产生的裂纹,提高涂层零件和结构的使用寿命。
-
公开(公告)号:CN103792250A
公开(公告)日:2014-05-14
申请号:CN201410078385.3
申请日:2014-03-05
Applicant: 哈尔滨工业大学
IPC: G01N25/00
Abstract: 本发明公开了一种基于微脱粘的陶瓷涂层加速老化实验及寿命预测方法。所述涂层加速老化实验方法为:将经过预处理的涂层试件放入管式炉中进行老化处理,控制管式炉的温度参数为:低温200~300℃,高温400~500℃,升降温速率2~5℃/min,高低温分别保温1h为一个循环,当涂层经历了所规定的循环数节点时,取出完成特定循环数的试件。所述涂层寿命预测方法为:步骤一、热循环加载;步骤二、形貌观测;步骤三、涂层脱落失效的判断。本发明针对陶瓷涂层找到了一种加速老化实验的方法,从而方便地通过实验对陶瓷涂层的老化过程进行观测;提出了一种陶瓷涂层脱落失效的物理模型,并利用模型对实际陶瓷涂层进行了寿命预测,效果显著。
-
-
-
-
-
-
-
-
-