用于锅炉、汽轮机和电网一次调频分析协调控制模型

    公开(公告)号:CN106527131B

    公开(公告)日:2019-03-29

    申请号:CN201610975324.6

    申请日:2016-10-27

    Abstract: 用于锅炉、汽轮机和电网一次调频分析协调控制模型,本发明涉及一种用于一次调频分析的锅炉、汽轮机、电网三方协调控制的超临界及超超临界机组协调控制模型,现有技术传统的机网协调和机炉协调的控制重点是汽轮发电机组与电网,一次调频控制回路中仅体现了对电网频差的负反馈控制策略,并未考虑对锅炉的影响,从而存在安全隐患,本发明为解决上述问题采取的技术方案是:步骤一:建立反映超临界及超超临界机组中直流锅炉机理模型,步骤二:建立超临界及超超临界直流锅炉控制器模型,步骤三:建立汽轮机一次调频模型,步骤四:建立包含不同类型机组的电力系统调频模型,步骤五:修正汽轮机功率给定信号,本发明用于锅炉、汽轮机和电网协调控制领域。

    一种能够促进超临界机组参与风功率消纳的控制方法

    公开(公告)号:CN108964090A

    公开(公告)日:2018-12-07

    申请号:CN201810889033.4

    申请日:2018-08-06

    CPC classification number: H02J3/24

    Abstract: 一种能够促进超临界机组参与风功率消纳的控制方法,属于风电机组调谐控制领域。本发明为解决现有的超临界机组控制技术无法在保证机组内部运行参数稳定的前提下,快速、准确补充机组跟踪大幅度功率变化所需要的蓄热的问题。本发明周期性采集风功率信号,利用采集的风功率信号构造周期性的锅炉输入加速信号BIR,将构造的锅炉输入加速信号BIR加入锅炉负荷指令BM;对蒸汽压力偏差信号ΔpT的绝对值与阈值A进行比较;当|△pT|≤A,且△pT×△f A时,对加入锅炉输入加速信号BIR的锅炉负荷指令BM进行修正,获得修正后的锅炉负荷指令BM′。本发明适用于超临界机组参与电网调频使用。

    用于锅炉、汽轮机和电网一次调频分析协调控制模型

    公开(公告)号:CN106527131A

    公开(公告)日:2017-03-22

    申请号:CN201610975324.6

    申请日:2016-10-27

    CPC classification number: G05B13/042

    Abstract: 用于锅炉、汽轮机和电网一次调频分析协调控制模型,本发明涉及一种用于一次调频分析的锅炉、汽轮机、电网三方协调控制的超临界及超超临界机组协调控制模型,现有技术传统的机网协调和机炉协调的控制重点是汽轮发电机组与电网,一次调频控制回路中仅体现了对电网频差的负反馈控制策略,并未考虑对锅炉的影响,从而存在安全隐患,本发明为解决上述问题采取的技术方案是:步骤一:建立反映超临界及超超临界机组中直流锅炉机理模型,步骤二:建立超临界及超超临界直流锅炉控制器模型,步骤三:建立汽轮机一次调频模型,步骤四:建立包含不同类型机组的电力系统调频模型,步骤五:修正汽轮机功率给定信号,本发明用于锅炉、汽轮机和电网协调控制领域。

    一种含有储能系统的电力系统惯性时间常数获得方法

    公开(公告)号:CN109066746B

    公开(公告)日:2021-05-07

    申请号:CN201810949809.7

    申请日:2018-08-20

    Abstract: 一种含有储能系统的电力系统惯性时间常数获得方法,涉及电力系统转动惯量等效领域。本发明是为了解决目前缺乏对电力系统中储能系统转动惯量等效方法的问题。本发明所述的一种含有储能系统的电力系统惯性时间常数获得方法,首先建立电力系统中每个储能系统的模型,根据储能系统的模型求取各储能系统的等效惯量时间常数;然后建立电力系统的模型,根据电力系统的模型求取电力系统的总等效惯量时间常数;最后将储能系统模型的等效惯量时间常数等效为电力系统模型的等效惯量时间常数,获得含有储能系统时,电力系统的总等效惯性时间常数。适用于超级电容储能系统进行等效。

    一种超临界机组参与风功率消纳的两区域系统调频的仿真方法

    公开(公告)号:CN108931928A

    公开(公告)日:2018-12-04

    申请号:CN201810896539.8

    申请日:2018-08-08

    Abstract: 为了研究超临界机组在高风电渗透率地区的调频能力问题,本发明提供一种超临界机组参与风功率消纳的两区域系统调频的仿真方法,属于超临界机组的仿真分析领域。本发明包括:步骤一:建立超临界机组、风电机组和亚临界机组的协调控制系统及机理模型,并在仅有一次调频、无二次调频的情况下观察各机理模型频差与主蒸汽参数的控制效果,调试出协调控制系统中的配比参数,确定超临界机组、风电机组和亚临界机组的数学传递函数;步骤二:根据数学传递函数建立两区域电力系统的调频模型,区域A包括超临界机组、风电机组和亚临界机组,区域B仅包括亚临界机组,区域A和区域B之间频率同步;步骤三:利用建立的两区域电力系统的调频模型和实测数据进行仿真和分析。

    一种电动汽车超级电容、电池能量源分频段参与电网调频方法

    公开(公告)号:CN108879734A

    公开(公告)日:2018-11-23

    申请号:CN201810949187.8

    申请日:2018-08-20

    Abstract: 本发明为了解决现有电池能量源的使用寿命低的问题,提供一种电动汽车超级电容、电池能量源分频段参与电网调频方法。本发明包括:S1:建立电动汽车电池能量源模型;S2:建立电动汽车超级电容能量源模型;S3:建立区域电网调频模型,区域电网调频模型包含电动汽车电池能量源模型和电动汽车超级电容能量源模型及各自参与调频的频段;S4:分别设定电动汽车超级电容能量源和电动汽车电池能量源参与电网调频的频段;S5:根据设定的频段,利用建立的区域电网调频模型进行仿真,并对设定的频段进行评估。本发明可以制定不同种电动汽车能量源分频段差异化参与电网调频,评估了不同调频频段中电动汽车电池能量源的寿命损耗。

    无源自驱多功能智能节能窗

    公开(公告)号:CN105003180A

    公开(公告)日:2015-10-28

    申请号:CN201510451127.X

    申请日:2015-07-28

    Abstract: 无源自驱多功能智能节能窗,属于节能窗技术领域。本发明是为了解决建筑能耗中建筑外窗的热损耗大的问题。它的窗户本体包括窗体外框、窗体内框、夹层侧壁和窗玻璃,窗体外框、窗体内框和夹层侧壁形成凹槽结构的窗户本体,窗体外框和窗体内框上分别固定有窗玻璃;一片温差发电片固定在窗体外框的内壁上,另一片温差发电片固定在窗体内框的内壁上,散热板夹接在两片温差发电片之间,并与夹层侧壁相固定;光伏发电片附着在窗体外框的外壁上,多源电能收集器固定在夹层侧壁的外表面上,单片机固定在窗体内框的外表面上;窗体内框上窗玻璃的内侧表面上覆盖有VO2薄膜,VO2薄膜的表面上均匀布置蛇形排布的电热线。本发明为一种节能窗。

Patent Agency Ranking