-
公开(公告)号:CN112692294B
公开(公告)日:2022-12-09
申请号:CN202011532526.6
申请日:2020-12-22
Applicant: 厦门钨业股份有限公司
Abstract: 本发明提供了一种高比重钨合金粉末及其制备方法,属于3D打印材料领域。本发明在保护气保护下将金属粉末、成形剂和溶剂混合球磨,得到粉末颗粒尺寸为1.8~2.5μm、流速为3.0~3.5L/H并且固含量为75~85%的料浆,再将料浆进行离心喷雾干燥造粒,筛分,得到高比重钨合金粉末。本发明通过控制所得料浆满足上述三个指标,使所得高比重钨合金粉末的粒径为18~48μm,粒径18~40μm的球形粉末重量占比95%以上,霍尔流速≤8s/50g,球形度98%以上,松装密度为理论密度的30%~40%,实心率≥98%,适用于3D打印;进一步通过在保护气保护下进行球磨、离心喷雾干燥造粒以及筛分,控制所得高比重钨合金粉末的氧含量不高于60ppm。本发明工艺简单,投资和生产成本低,适于工业化生产。
-
公开(公告)号:CN113969363A
公开(公告)日:2022-01-25
申请号:CN202010719116.6
申请日:2020-07-23
Applicant: 核工业西南物理研究院 , 厦门钨业股份有限公司
Abstract: 本发明属于钨合金的制备方法,具体涉及一种具有低温韧性和高再结晶温度的钨合金的制备方法。一种具有低温韧性和高再结晶温度的钨合金的制备方法,包括下述步骤:步骤一:混合烧结;将金属钨与弥散颗粒混合,并烧结为柱状烧结生坯;步骤二:锻造加工;对烧结生坯锻造加工,直到尺寸满足要求;步骤三:退火;对锻造加工完成的产品进行退火。本发明的显著效果是:本发明能制备得到完全致密的钨块体材料,在制备过程中可以有效地控制钨基材料的微观组织,使得钨棒材的低温韧性和再结晶温度大幅度提高。并且该方法制备的材料成本低,适宜制造大尺寸和工程化的钨块体材料。
-
公开(公告)号:CN111041317A
公开(公告)日:2020-04-21
申请号:CN201911318588.4
申请日:2019-12-19
Applicant: 厦门钨业股份有限公司
IPC: C22C27/04 , C22C30/00 , C22C1/05 , C22C1/10 , B22F9/26 , B22F9/04 , B22F3/04 , B22F3/10 , B22F3/24
Abstract: 本发明涉及合金材料的制备领域,特别涉及一种微纳复合增强钨合金材料及其制备方法。制备方法包括以下步骤:将含钨、铼和钼元素的原料进行固液掺杂或液液掺杂混合,再进行还原后,加入铪、碳混合物或碳化铪粉末,进行球磨混合,得到混合粉末;将混合粉末装入模具中进行冷等静压压制成形,成形后置于氢气气氛的中频炉中烧结;对烧结后的样品进行压力加工和热处理,即得到微纳复合增强钨合金材料。本发明提供的制备方法所制备的微纳复合增强钨合金材料与现有的技术相比,具有耐高温、耐蚀、较低密度的微纳复合增强钨合金材料,材料具有低的热膨胀系数、高的高温强度(1600-2200℃)、抗强力冲刷(4.5-7MPa)、抗热震、抗氧化及高韧性等有益效果。
-
公开(公告)号:CN108393485B
公开(公告)日:2020-03-20
申请号:CN201810174498.1
申请日:2018-03-02
Applicant: 厦门钨业股份有限公司
IPC: B22F1/00
Abstract: 本发明公开了一种用于粉末注射成形的钨合金喂料及其制备方法,按照重量百分比,所述喂料由包括90wt.%~97wt.%的钨合金粉末和3wt.%~10wt.%的粘结剂颗粒的原料制成,所制成喂料的相对真密度为99.0%~99.5%。本发明工艺可连续生产均匀性好、稳定性好、性能优良的喂料,有效解决了传统密炼工艺存在的稳定性差和无法连续生产的问题。
-
公开(公告)号:CN118639072A
公开(公告)日:2024-09-13
申请号:CN202410683037.2
申请日:2024-05-29
Applicant: 厦门钨业股份有限公司
IPC: C22C27/04 , G21F1/08 , C22C1/059 , C22C32/00 , B22F1/17 , B22F3/04 , B22F3/10 , B22F3/24 , B22F3/18
Abstract: 本发明涉及含钆高比重钨合金屏蔽材料及其制备方法与应用,所述含钆高比重钨合金屏蔽材料的制备原料包括钆源;所述钆源包括氧化钆和/或表面改性氧化钆。作为中子吸收材料添加剂时,氧化钆具有比金属硼化物更高的硼当量,即达到同样中子屏蔽效果时屏蔽材料中所需氧化钆的添加量显著低于金属硼化物,可以显著降低对屏蔽材料力学性能带来的不利影响;从另一个角度说明在具有同样力学性能时,允许的氧化钆的添加量显著高于金属硼化物。因此,屏蔽材料可实现对γ射线和中子的复合屏蔽效果,同时该屏蔽材料的微观组织与传统高比重钨合金材料类似,不产生不利的新物相,具有良好的力学性能,室温极限抗拉强度≥950MPa,室温断后伸长率≥15%。
-
公开(公告)号:CN115404419B
公开(公告)日:2023-09-01
申请号:CN202211144036.8
申请日:2022-09-20
Applicant: 厦门钨业股份有限公司
IPC: C22C47/14 , C22C47/06 , C22C47/04 , C23C16/14 , C22C49/10 , C22C49/14 , B22F9/22 , C22C111/02 , C22C121/02
Abstract: 本发明提供了一种钨丝增强钨基复合材料的制备方法,包括以下步骤:A)将三维钨丝编织体进行化学气相沉积,得到复合有钨涂层的三维钨丝编织体;B)将步骤A)得到的三维钨丝编织体于钨粉浆料中浸渍,再依次进行烘干和预烧,得到填充有钨材料的三维钨丝编织体,重复该步骤多次;C)将步骤B)得到的填充有钨材料的三维钨丝编织体于钨酸盐浸渍液中浸渍,再依次进行煅烧、还原和预烧,得到预烧结体,重复该步骤多次;D)将步骤C)得到的预烧结体依次进行烧结和压力加工,得到钨丝增强钨基复合材料。本申请提供的方法制备的钨丝增强钨基复合材料具有优异的室温三维强度与室温三维韧性。
-
公开(公告)号:CN115821138A
公开(公告)日:2023-03-21
申请号:CN202211563967.1
申请日:2022-12-07
Applicant: 厦门钨业股份有限公司
Abstract: 本发明提供了一种掺钾的钨合金块材及其制备方法和应用,其中的掺钾的钨合金块材中钨的质量百分比≥99.95%;所述掺钾的钨合金块材的晶向(001)占比为5~15%,晶向(101)占比为60~85%,晶向(111)占比为0~15%;该掺钾的钨合金块材的再结晶温度≥1700℃、韧脆转变温度≤100℃、室温热导率≥168W·m‑1·K‑1,即该掺钾的钨合金块材同时具备优异的晶粒结构稳定性、低温韧性,且热导性能优良,可用作钨基面向等离子体材料。
-
公开(公告)号:CN110438350B
公开(公告)日:2021-09-03
申请号:CN201910874573.X
申请日:2019-09-17
Applicant: 厦门钨业股份有限公司 , 南京理工大学
IPC: B22F3/10
Abstract: 本发明公开了一种纯钼块材及其制备方法,所述纯钼块材中钼的含量为99.95wt%以上,通过电子背散射衍射对所述纯钼块材的晶向进行分析,晶向(111)占比为35%‑45%,晶向(001)占比为15%‑35%,晶向(101)占比为15%‑35%,该纯钼块材相比现有纯钼块材在塑性方面显著提升,塑性延展率达到钼合金水平。纯钼块材的制备至少包括如下步骤:选取纯度99.9wt%以上的钼粉作为原料的工序;将所述钼粉经过压制制成生坯的工序;将所述生坯经过烧结制成烧结坯,使所述烧结坯的相对密度为94.5%‑98%的工序;将所述烧结坯进行锻造和真空热处理的工序。
-
公开(公告)号:CN115404419A
公开(公告)日:2022-11-29
申请号:CN202211144036.8
申请日:2022-09-20
Applicant: 厦门钨业股份有限公司
IPC: C22C47/14 , C22C47/06 , C22C47/04 , C23C16/14 , C22C49/10 , C22C49/14 , B22F9/22 , C22C111/02 , C22C121/02
Abstract: 本发明提供了一种钨丝增强钨基复合材料的制备方法,包括以下步骤:A)将三维钨丝编织体进行化学气相沉积,得到复合有钨涂层的三维钨丝编织体;B)将步骤A)得到的三维钨丝编织体于钨粉浆料中浸渍,再依次进行烘干和预烧,得到填充有钨材料的三维钨丝编织体,重复该步骤多次;C)将步骤B)得到的填充有钨材料的三维钨丝编织体于钨酸盐浸渍液中浸渍,再依次进行煅烧、还原和预烧,得到预烧结体,重复该步骤多次;D)将步骤C)得到的预烧结体依次进行烧结和压力加工,得到钨丝增强钨基复合材料。本申请提供的方法制备的钨丝增强钨基复合材料具有优异的室温三维强度与室温三维韧性。
-
公开(公告)号:CN112408952B
公开(公告)日:2022-07-15
申请号:CN202011413358.9
申请日:2020-12-03
Applicant: 厦门钨业股份有限公司 , 核工业西南物理研究院
IPC: C04B35/10 , C04B35/622 , C04B35/638
Abstract: 本发明提供一种高热导薄壁陶瓷管及其制造方法,其中,高热导薄壁陶瓷管的制造方法,包括:步骤一、取一定量4N纯度以上、粒度D50为0.2μm~0.6μm的氧化铝粉末原料进行精细处理;步骤二、在加热状态下,将处理过的氧化铝粉末与粘结剂混合均匀,挤出制得陶瓷喂料;步骤三、将陶瓷喂料注塑成型,制得薄壁管生胚;步骤四、对薄壁管生胚进行脱脂处理;步骤五、对脱脂处理后的薄壁管进行保温;步骤六、保温后,烧结制得薄壁陶瓷管。通过上述方法制得的陶瓷管,管内径为3mm~4mm,壁厚为0.3mm~0.5mm,相对密度在99.5%以上,室温下热导率能够达到30W/(m·K)以上,1000℃热导率能够达到7W/(m·K)以上。
-
-
-
-
-
-
-
-
-