-
公开(公告)号:CN112348015B
公开(公告)日:2022-11-18
申请号:CN202011238231.8
申请日:2020-11-09
Applicant: 厦门市美亚柏科信息股份有限公司
IPC: G06V20/62 , G06V10/22 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/04 , G06N3/08 , G06N5/04
Abstract: 本发明公开了一种基于级联神经网络的文字检测方法、装置及存储介质,该方法通过收集样本,并对样本进行处理生成数据集;搭建第一全卷积网络,通过数据集对第一全卷积网络进行训练至网络收敛,并通过训练后的第一全卷积网络对数据集进行推理,获得回归结果;搭建第二全卷积网络,通过回归结果对第二全卷积网络进行训练至网络收敛;将待验证图片输入第一全卷积网络,若第一全卷积网络判断在滑窗范围内存在文字,则裁剪下滑窗范围内的区域做双线性插值尺度变换并输入第二全卷积网络,通过第二全卷积网络判断区域是否为文字区域。该方法具有更好的泛化性能,并能够在保证检测准确率与召回率的同时,降低模型大小,从而提升文字检测算法性能。
-
公开(公告)号:CN113807392B
公开(公告)日:2022-09-16
申请号:CN202110896904.7
申请日:2021-08-05
Applicant: 厦门市美亚柏科信息股份有限公司
IPC: G06V10/764 , G06V10/80 , G06V10/774 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种基于多预处理特征融合的篡改图像鉴别方法,其可包括以下步骤:S1、收集样本,构建训练集与验证集;S2、搭建多预处理特征提取模块;S3、将训练集中的每一张图像通过多预处理特征提取模块处理得到相应特征,并对同一张图像获取到的特征以通道维度合并,形成该图像的特征张量;S4、将特征张量输入神经网络模型进行训练直到损失收敛;S5、将验证集输入训练好的神经网络模型,获取输出结果,若输出结果大于预设阈值,则判定该图像为篡改图像。本发明通过提前提取先验特征的方式,使得模型更容易拟合到相关特征,更易于训练,能够实现对多种篡改方式进行同时鉴别。
-
公开(公告)号:CN113807337B
公开(公告)日:2022-09-06
申请号:CN202110940583.6
申请日:2021-08-17
Applicant: 厦门市美亚柏科信息股份有限公司
IPC: G06V30/16 , G06V30/148 , G06V30/19
Abstract: 本发明涉及一种基于图连通的文本检测方法、终端设备及存储介质,该方法中包括:S1:采集具有单字符文本标注的图像组成训练集;S2:构建文字检测模型,通过训练集对模型进行训练;S3:将待处理图像输入训练后的文字检测模型中,剔除置信度较低的预测文本框后,将其他预测文本框组成集合B;S4:计算集合B中每两个预测文本框之间的第一参数GIoU和第二参数DHIoU;S5:将集合B中所有的预测文本框作为图节点构建无向图,若两节点之间满足GIoU小于第一阈值且DHIoU小于第二阈值,则设定两节点之间连通,否则不连通;S6:计算无向图的连通分量,并计算每个连通分量所包含节点的最小外接矩形,将最小外接矩形作为文本框。本发明能够快速的准确进行文本区域定位。
-
公开(公告)号:CN113807337A
公开(公告)日:2021-12-17
申请号:CN202110940583.6
申请日:2021-08-17
Applicant: 厦门市美亚柏科信息股份有限公司
Abstract: 本发明涉及一种基于图连通的文本检测方法、终端设备及存储介质,该方法中包括:S1:采集具有单字符文本标注的图像组成训练集;S2:构建文字检测模型,通过训练集对模型进行训练;S3:将待处理图像输入训练后的文字检测模型中,剔除置信度较低的预测文本框后,将其他预测文本框组成集合B;S4:计算集合B中每两个预测文本框之间的第一参数GIoU和第二参数DHIoU;S5:将集合B中所有的预测文本框作为图节点构建无向图,若两节点之间满足GIoU小于第一阈值且DHIoU小于第二阈值,则设定两节点之间连通,否则不连通;S6:计算无向图的连通分量,并计算每个连通分量所包含节点的最小外接矩形,将最小外接矩形作为文本框。本发明能够快速的准确进行文本区域定位。
-
公开(公告)号:CN113591936A
公开(公告)日:2021-11-02
申请号:CN202110779118.9
申请日:2021-07-09
Applicant: 厦门市美亚柏科信息股份有限公司
Abstract: 本发明涉及一种车辆姿态估计方法、终端设备及存储介质,该方法中包括:S1:采集包含车辆的图像,并对图像中车辆对应的姿态和车辆目标的边界框进行标注,将标注后的图像组成训练集;S2:构建基于YOLOv2网络的车辆姿态估计模型,通过训练集对车辆姿态估计模型进行训练;S3:通过训练后的车辆姿态估计模型对车辆姿态和车辆目标进行估计。本发明可以和智能交通系统的检测任务融合为一个主干网络,具有较好的泛化性,不需要额外设计负责车辆姿态估计的网络结构,只需要修改检测器的输入和输出就能实现这种车辆姿态估计,在现实场景中具有较强的应用,且减少了硬件设施的消耗。
-
公开(公告)号:CN112381086A
公开(公告)日:2021-02-19
申请号:CN202011229081.4
申请日:2020-11-06
Applicant: 厦门市美亚柏科信息股份有限公司
Abstract: 本发明涉及一种结构化输出图像文字识别结果的方法及装置,该方法包括以下步骤:S1.利用光学字符识别算法(OCR)获取检测框位置信息;S2.构建带标注的关键字段数据集,其中,关键字段为待获取的信息类别;S3.设定锚定字段;S4.特征向量构建,将相对位置信息和相对宽高比用于特征向量生成;S5.训练优化分类器,用生成的特征向量对机器学习分类器进行训练和优化;S6.检测框分类,使用训练优化后的机器学习分类器对待识别图像的文字区域的检测框进行分类;S7.识别并输出结构化结果,具体地,识别检测框内的文字,并对识别后的文字进行关键信息匹配,将版式相近的文字字段校正输出,最终输出结构化结果数据。
-
公开(公告)号:CN117095329A
公开(公告)日:2023-11-21
申请号:CN202310959022.X
申请日:2023-08-01
Applicant: 厦门市美亚柏科信息股份有限公司
IPC: G06V20/40 , G06V10/44 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 公开了一种减缓行人属性识别类内变化的方法和系统,包括接收数据集中任一张图像xi输入主干网络进行多标签分类任务的行人属性识别,采用二值交叉熵作为损失函数;利用指数信息瓶颈作用于主干网络的每个卷积模块和注意力机制模块,过滤特征中存在的冗余干扰特征信息。本申请提出的指数信息瓶颈方法可以集成到注意力模块中,形成一个新颖的行人熟悉识别网络,可以进一步处理基于注意力机制的属性内变化,指数信息瓶颈方法是即插即用的,在推理期间没有任何额外的计算开销。
-
公开(公告)号:CN115578714A
公开(公告)日:2023-01-06
申请号:CN202211183158.8
申请日:2022-09-27
Applicant: 厦门市美亚柏科信息股份有限公司
Abstract: 公开了一种基于浅层特征信息增强的车辆颜色识别方法和系统,包括在车辆颜色识别的卷积神经网络中嵌入浅层特征信息增强模块,卷积神经网络包括浅层卷积块、中层卷积块和高层卷积块,浅层特征信息增强模块嵌入浅层卷积块和中层卷积块之后;车辆图片作为浅层卷积块的输入依次进行特征提取,浅层特征信息增强模块接收特征输入,经过多个1*1卷积层获得不同维度的特征,对不同维度的特征进行矩阵相乘获得增强信息表达的特征,送入下一卷积块;将各卷积块的特征依次送入全局平均池化层、对应的分类层进行分类,并利用标签平滑正则化的交叉熵损失函数进行约束。浅层特征信息增强模块可灵活的插入卷积神经网络任意位置,增强特征信息,增加模型的泛化性。
-
公开(公告)号:CN115546907A
公开(公告)日:2022-12-30
申请号:CN202211153579.6
申请日:2022-09-21
Applicant: 厦门市美亚柏科信息股份有限公司
Abstract: 公开了多尺度特征聚合的活体检测方法和系统,包括将RGB图像通过图像变换转换为HSV图像,将RGB图像和HSV图像融合为RGB‑HSV图像并送入主干网络;将主干网络提取的特征送入特征深度拓展模块,并将输出送入多特征提取模块以获得更多的上下文信息;将最终输出经过池化层和分类层,并在交叉熵损失函数的约束下进行训练。本发明提出的一种多尺度特征聚合的活体检测方法和系统,其具有参数量小、对图像的接受域大、多尺度特征聚合的特点,利用了空洞卷积以扩大网络的感受野,获取更多的上下文信息,利用RGB图像和HSV图像作为6通道的图像作为输入,运行速度与仅使用RGB图像的运行速度是一致的,在性能和效率之间取得了很好的平衡。
-
公开(公告)号:CN113591936B
公开(公告)日:2022-09-09
申请号:CN202110779118.9
申请日:2021-07-09
Applicant: 厦门市美亚柏科信息股份有限公司
Abstract: 本发明涉及一种车辆姿态估计方法、终端设备及存储介质,该方法中包括:S1:采集包含车辆的图像,并对图像中车辆对应的姿态和车辆目标的边界框进行标注,将标注后的图像组成训练集;S2:构建基于YOLOv2网络的车辆姿态估计模型,通过训练集对车辆姿态估计模型进行训练;S3:通过训练后的车辆姿态估计模型对车辆姿态和车辆目标进行估计。本发明可以和智能交通系统的检测任务融合为一个主干网络,具有较好的泛化性,不需要额外设计负责车辆姿态估计的网络结构,只需要修改检测器的输入和输出就能实现这种车辆姿态估计,在现实场景中具有较强的应用,且减少了硬件设施的消耗。
-
-
-
-
-
-
-
-
-