变量误差Wiener系统的碳纤维牵伸过程辨识方法

    公开(公告)号:CN118112925A

    公开(公告)日:2024-05-31

    申请号:CN202410133373.X

    申请日:2024-01-31

    Applicant: 南通大学

    Abstract: 本发明提供了一种变量误差Wiener系统的碳纤维牵伸过程辨识方法,属于碳纤维牵伸过程的建模技术领域。解决了输入、输出和中间过程均受到噪声干扰的碳纤维牵伸过程的参数估计问题。其技术方案为:包括如下步骤:步骤1)构建出一个基于变量误差Wiener系统的碳纤维牵伸过程模型,并获得碳纤维牵伸过程变量误差Wiener系统辨识模型;步骤2)构建出基于偏差补偿最小二乘和模糊粒子群优化的递阶辨识方法。本发明的有益效果为:本发明首先建立合适的碳纤维单级牵伸过程的模型,并提出一种基于偏差补偿最小二乘和模糊粒子群优化的递阶辨识方法,对碳纤维牵伸模型的未知参数进行参数估计。

    压电作动器控制系统自适应差分进化麻雀搜索辨识方法

    公开(公告)号:CN116009399A

    公开(公告)日:2023-04-25

    申请号:CN202310009374.9

    申请日:2023-01-03

    Applicant: 南通大学

    Abstract: 本发明提供了一种压电作动器控制系统自适应差分进化麻雀搜索辨识方法,属于压电作动器控制系统辨识技术领域。解决了辨识压电作动器控制系统模型参数和时间延迟速度慢和精度不高的技术问题。其技术方案为:包括以下步骤:步骤1)建立压电作动器控制系统的单输入单输出模型;步骤2)构建压电作动器控制系统自适应差分进化麻雀搜索辨识方法的辨识流程,对所有参数和时间延迟进行估计。本发明的有益效果为:本发明提出的压电作动器控制系统自适应差分进化麻雀搜索辨识方法有较快的收敛速度和较高的收敛精度,能较好地适用于对压电作动器控制系统时延非线性闭环模型的建模和参数辨识。

    基于CUR-RBF-PF的锂离子电池SOH估计方法

    公开(公告)号:CN118759403A

    公开(公告)日:2024-10-11

    申请号:CN202410995761.9

    申请日:2024-07-24

    Applicant: 南通大学

    Abstract: 本申请公开了一种基于CUR‑RBF‑PF的锂离子电池SOH估计方法,包括以下步骤:基于锂离子电池的历史老化数据,通过CUR提取锂离子电池的健康指标数据;基于RBF神经网络模型以及健康指标数据,获取锂离子电池的第一SOH估计值;通过粒子滤波器对锂离子电池的SOH值进行滤波优化,获取锂离子电池的第二SOH估计值。本申请通过CUR的方法对锂离子电池的退化数据进行特征提取,易实现,且提取到的特征数据与SOH具有较高的相关性。本申请在利用RBF实现锂离子电池SOH估计的基础上引入PF滤波算法针对其估计结果中存在的噪声问题进行了优化,利用PF优化后的SOH估计结果具有更高的精度。

    一种基于贝叶斯神经网络的固定翼无人机态势预测方法

    公开(公告)号:CN117540626B

    公开(公告)日:2024-05-14

    申请号:CN202311428417.3

    申请日:2023-10-30

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于贝叶斯神经网络的固定翼无人机态势预测方法,属于无人机态势预测技术领域;解决了在不确定环境下我方无人机无法对敌方无人机的未来态势做不确定性预测的技术问题。其技术方案为:建立适用于时间序列预测的贝叶斯网络并收集敌方无人机的有限态势信息;以敌方无人机态势信息作为输入,使用已建立的贝叶斯神经网络对敌方无人机的下一时刻的态势做预测;将单一时刻预测值作为输入再次预测,构成敌方无人机未来时间段的态势信息。本发明的有益效果为:能够令己方无人机在战场环境中利用有限的态势信息预知敌方无人机下一段时间的态势,使我方无人机能够抢占战场主动性,有利于提升无人机作战能力,从而降低我方无人机的战损比。

    基于Wiener的锂离子电池非线性建模及其参数辨识方法

    公开(公告)号:CN116482555B

    公开(公告)日:2024-03-19

    申请号:CN202310376577.1

    申请日:2023-04-10

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于Wiener结构的锂离子电池非线性建模及其参数辨识方法,属于锂离子电池技术领域。解决了传统二阶RC等效电路模型输出非线性映射能力不足的技术问题。其技术方案为:包括以下步骤:步骤1)对锂离子电池进行间歇恒流放电实验测取其端电压及负载电流数据;步骤2)建立基于Wiener结构的锂离子电池非线性模型;步骤3)构建辅助模型随机梯度的算法流程;步骤4)对AM‑SG算法进行优化;步骤5)对锂电池端电压进行预测。本发明的有益效果为:本发明利用AM‑εFG算法进行参数辨识,精度高。

    基于梯度算法的液体饱和蒸汽热交换系统参数辨识方法

    公开(公告)号:CN116821558A

    公开(公告)日:2023-09-29

    申请号:CN202310805102.X

    申请日:2023-06-30

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于梯度算法的液体饱和蒸汽热交换系统参数辨识方法,属于蒸汽热交换系统辨识技术领域,解决了液体饱和蒸汽热交换系统参数辨识精度不高的技术问题。其技术方案为:一种基于梯度算法的液体饱和蒸汽热交换系统参数辨识方法,包括以下步骤:步骤1)建立液体饱和蒸汽热交换系统分数阶Wiener OEARMA模型;步骤2)构建递阶多新息随机梯度算法的辨识流程。本发明的有益效果为:本发明提出的递阶多新息随机梯度算法具有较快的收敛速度和较高的收敛精度,能较好的适用于对液体饱和蒸汽热交换系统的参数辨识。

    一种基于Attention-BiLSTM的液压伺服系统辨识方法

    公开(公告)号:CN116624469A

    公开(公告)日:2023-08-22

    申请号:CN202310585344.2

    申请日:2023-05-22

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于Attention‑BiLSTM的液压伺服系统辨识方法,属于液压伺服系统辨识技术领域。解决了辨识液压伺服系统难度大和精度不高的技术问题。其技术方案为:包括以下步骤:步骤1)通过仿真实验,获得样本数据;步骤2)数据预处理并构建数据集,并将其分为训练集和测试集;步骤3)通过Attention‑BiLSTM长短期记忆神经网络对数据集进行训练,得到Attention‑BiLSTM模型用于实时估计。本发明的有益效果为:本发明使用的Attention‑BiLSTM长短期记忆神经网络通过Attention机制对模型的输入特征给以不同的权重,从而找到更关键的影响因素,提升模型的学习能力。

    地埋管换热器模型的多种群自适应差分进化参数辨识方法

    公开(公告)号:CN115577622A

    公开(公告)日:2023-01-06

    申请号:CN202211183329.7

    申请日:2022-09-27

    Applicant: 南通大学

    Abstract: 本发明提供了一种地埋管换热器模型的多种群自适应差分进化参数辨识方法,其特征在于,属于地埋管换热器参数辨识技术领域。解决了传统建模方法过于依赖地埋管换热器的内部机理致使其模型结构过于复杂、辨识参数量大、辨识过程中需要考虑岩土热物性和季节性变化等不稳定因素的问题。其技术方案为:包括以下步骤:步骤1)建立地埋管换热器的Wiener‑Hammerstein模型用来描述其输入输出关系;步骤2)构建多种群自适应差分进化算法的辨识过程。本发明的有益效果为:本发明的算法有着较好的辨识精度和收敛速度,能很好地适用于地埋管换热器传热过程的参数辨识。

Patent Agency Ranking