液压位置伺服系统改进混沌变权麻雀搜索参数辨识方法

    公开(公告)号:CN114995149A

    公开(公告)日:2022-09-02

    申请号:CN202210665775.5

    申请日:2022-06-13

    Applicant: 南通大学

    Abstract: 本发明提供了一种液压位置伺服系统改进混沌变权麻雀搜索参数辨识方法,属于液压位置伺服系统辨识技术领域。解决了液压位置伺服系统进行分析和控制时给液压位置伺服系统建立的数学模型,辨识所建立模型的参数和时间延迟的技术问题。其技术方案为:包括以下步骤:步骤1)建立液压位置伺服系统的单输入单输出模型;步骤2)构建液压位置伺服系统改进混沌变权麻雀搜索参数辨识方法的辨识流程,对所有参数和时间延迟进行估计。本发明的有益效果为:本发明提出的液压位置伺服系统改进混沌变权麻雀搜索参数辨识方法有较快的收敛速度和较高的收敛精度,能较好地适用于对液压位置伺服系统时滞反馈非线性模型的建模和参数辨识。

    一种基于3DCNN的锂离子电池SOC估计方法

    公开(公告)号:CN114062948B

    公开(公告)日:2022-05-20

    申请号:CN202210025289.7

    申请日:2022-01-11

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于3DCNN的锂离子电池SOC估计方法,属于锂离子电池技术领域。解决了SOC估计方法中3DCNN卷积神经网络难以用于SOC估计的问题。其技术方案为:该方法包括以下步骤:步骤1)通过放电实验,反复测取电流等数据;步骤2)数据预处理并构建数据集;步骤3)通过3DCNN卷积神经网络对数据集进行训练,得到3DCNN模型用于实时估计。本发明的有益效果为:本发明使用的卷积神经网络结构能够发掘相邻放电周期之间同一时间点上输入数据的联系,时间维度上的卷积核不仅能考虑循环次数,还能提取各个循环之间的特征关系,且凭借其高适应能力,还可以进行电池剩余容量、电池剩余寿命等电池各个参数的预测。

    一种基于融合神经网络的锂离子电池SOC估计方法

    公开(公告)号:CN114487845A

    公开(公告)日:2022-05-13

    申请号:CN202210038879.3

    申请日:2022-01-13

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于融合神经网络的锂离子电池SOC估计方法,属于锂离子电池技术领域。解决了目前电池容量的SOC估计难估计的技术问题。其技术方案为:步骤1)将全新锂电池充满电,测取SOC从1到0的锂离子电池的端电压、电流、温度;步骤2)对测取的数据进行预处理;步骤3)使用2DCNN卷积神经网络对新的数据集进行训练和测试,实现SOC实时估计。本发明的有益效果为:本发明在数据集中加入估计的电池容量数据,能够拥有更高的估计精度,相比较LSTM,不会将误差一直记忆;并且,短的历史数据长度也能拥有更快的估计速度;相较使用3DCNN来估计SOC,能够减少运算量并且减少不必要的误差输入,从而拥有更高的精度。

    基于Wiener的锂离子电池非线性建模及其参数辨识方法

    公开(公告)号:CN116482555B

    公开(公告)日:2024-03-19

    申请号:CN202310376577.1

    申请日:2023-04-10

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于Wiener结构的锂离子电池非线性建模及其参数辨识方法,属于锂离子电池技术领域。解决了传统二阶RC等效电路模型输出非线性映射能力不足的技术问题。其技术方案为:包括以下步骤:步骤1)对锂离子电池进行间歇恒流放电实验测取其端电压及负载电流数据;步骤2)建立基于Wiener结构的锂离子电池非线性模型;步骤3)构建辅助模型随机梯度的算法流程;步骤4)对AM‑SG算法进行优化;步骤5)对锂电池端电压进行预测。本发明的有益效果为:本发明利用AM‑εFG算法进行参数辨识,精度高。

    基于梯度算法的液体饱和蒸汽热交换系统参数辨识方法

    公开(公告)号:CN116821558A

    公开(公告)日:2023-09-29

    申请号:CN202310805102.X

    申请日:2023-06-30

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于梯度算法的液体饱和蒸汽热交换系统参数辨识方法,属于蒸汽热交换系统辨识技术领域,解决了液体饱和蒸汽热交换系统参数辨识精度不高的技术问题。其技术方案为:一种基于梯度算法的液体饱和蒸汽热交换系统参数辨识方法,包括以下步骤:步骤1)建立液体饱和蒸汽热交换系统分数阶Wiener OEARMA模型;步骤2)构建递阶多新息随机梯度算法的辨识流程。本发明的有益效果为:本发明提出的递阶多新息随机梯度算法具有较快的收敛速度和较高的收敛精度,能较好的适用于对液体饱和蒸汽热交换系统的参数辨识。

    基于极大似然最小二乘算法的分数阶压电陶瓷辨识方法

    公开(公告)号:CN117094130B

    公开(公告)日:2024-05-14

    申请号:CN202310894100.2

    申请日:2023-07-20

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于极大似然最小二乘算法的分数阶压电陶瓷辨识方法,属于电子设备系统辨识技术领域,解决了最小二乘算法收敛速度慢且辨识精度不高的技术问题。其技术方案为:一种基于极大似然最小二乘算法的分数阶压电陶瓷辨识方法,其技术方案为:包括以下步骤:步骤1)建立分数阶压电陶瓷系统Hammerstein非线性模型;步骤2)构建极大似然最小二乘算法的辨识流程。本发明的有益效果为:本发明提出的极大似然最小二乘算法有较快的收敛速度和较高的收敛精度,能较好的适用于对分数阶压电陶瓷系统的建模和参数辨识。

    基于极大似然最小二乘算法的分数阶压电陶瓷辨识方法

    公开(公告)号:CN117094130A

    公开(公告)日:2023-11-21

    申请号:CN202310894100.2

    申请日:2023-07-20

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于极大似然最小二乘算法的分数阶压电陶瓷辨识方法,属于电子设备系统辨识技术领域,解决了最小二乘算法收敛速度慢且辨识精度不高的技术问题。其技术方案为:一种基于极大似然最小二乘算法的分数阶压电陶瓷辨识方法,其技术方案为:包括以下步骤:步骤1)建立分数阶压电陶瓷系统Hammerstein非线性模型;步骤2)构建极大似然最小二乘算法的辨识流程。本发明的有益效果为:本发明提出的极大似然最小二乘算法有较快的收敛速度和较高的收敛精度,能较好的适用于对分数阶压电陶瓷系统的建模和参数辨识。

    新型磁悬浮球系统混沌自适应麻雀搜索参数辨识方法

    公开(公告)号:CN116070670A

    公开(公告)日:2023-05-05

    申请号:CN202310004039.X

    申请日:2023-01-03

    Applicant: 南通大学

    Abstract: 本发明提供了一种新型磁悬浮球系统混沌自适应麻雀搜索参数辨识方法,属于新型磁悬浮球系统辨识技术领域。解决了辨识新型磁悬浮球系统模型参数精度不高和速度慢的技术问题。其技术方案为:包括以下步骤:步骤1)建立新型磁悬浮球系统的单输入单输出模型;步骤2)构建新型磁悬浮球系统混沌自适应麻雀搜索参数辨识方法的辨识流程,对所有参数进行估计。本发明的有益效果为:本发明提出的新型磁悬浮球系统混沌自适应麻雀搜索参数辨识方法有较快的收敛速度和较高的收敛精度,能较好地适用于对新型磁悬浮球系统反馈非线性模型的建模和参数辨识。

    一种火工品起爆过程参数辨识方法

    公开(公告)号:CN114239253B

    公开(公告)日:2022-12-02

    申请号:CN202111491893.0

    申请日:2021-12-08

    Applicant: 南通大学

    Abstract: 本发明提供了一种火工品起爆过程参数辨识方法,属于火工品参数辨识技术领域,解决了梯度下降算法收敛速度慢的问题。其技术方案为:该辨识方法具体包括以下步骤:步骤1)建立火工品起爆过程的Volterra模型;步骤2)构建Levenberg‑Marquardt递推算法的辨识过程。本发明的有益效果为:本发明建立了火工品起爆过程的参数辨识模型,利用Levenberg‑Marquardt递推算法对起爆过程的参数进行辨识,该算法具有收敛速度快、估计精度高的特点,该辨识方法对于火工品起爆过程的参数辨识有较好的适用性。

    一种基于3DCNN的锂离子电池SOC估计方法

    公开(公告)号:CN114062948A

    公开(公告)日:2022-02-18

    申请号:CN202210025289.7

    申请日:2022-01-11

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于3DCNN的锂离子电池SOC估计方法,属于锂离子电池技术领域。解决了SOC估计方法中3DCNN卷积神经网络难以用于SOC估计的问题。其技术方案为:该方法包括以下步骤:步骤1)通过放电实验,反复测取电流等数据;步骤2)数据预处理并构建数据集;步骤3)通过3DCNN卷积神经网络对数据集进行训练,得到3DCNN模型用于实时估计。本发明的有益效果为:本发明使用的卷积神经网络结构能够发掘相邻放电周期之间同一时间点上输入数据的联系,时间维度上的卷积核不仅能考虑循环次数,还能提取各个循环之间的特征关系,且凭借其高适应能力,还可以进行电池剩余容量、电池剩余寿命等电池各个参数的预测。

Patent Agency Ranking