-
公开(公告)号:CN101510574A
公开(公告)日:2009-08-19
申请号:CN200910068154.3
申请日:2009-03-18
Applicant: 南开大学
CPC classification number: Y02P70/521
Abstract: 一种窄带隙薄膜光伏材料β-FeSi2的制备方法。利用直流磁控溅射Fe-Si组合靶,在单晶硅衬底上制备Fe-Si薄膜,然后经过后续热退火,最终形成高质量的单一相β-FeSi2薄膜。针对Fe/Si原子比例偏离造成后退火过程中严重的互扩散问题,本发明通过接地挡板来调节组合靶中铁靶和硅靶面积的方法,非常方便地实现了沉积的薄膜中Fe/Si原子比的调节,退火温度从传统的700~800℃减小到600~700℃,退火时间减少到1~2小时,得到了具有优异光电性能的单一相β-FeSi2薄膜,并成功制备出效率0.562%的n-β-FeSi2/p-Si(111)异质结太阳电池。本发明的有益效果是:可以显著提高β-FeSi2薄膜的光电性能,从而有利于提高太阳电池的效率。
-
公开(公告)号:CN100519836C
公开(公告)日:2009-07-29
申请号:CN200710150228.9
申请日:2007-11-19
Applicant: 南开大学
IPC: C23C16/505
Abstract: 本发明公开了一种可获得均匀电场的大面积VHF-PECVD反应室异形电极。它的功率电极板在功率馈入端口附近设有对应的附加电极片,所述附加电极片平行于功率电极板水平面,所述附加电极片的厚度小于功率电极板,所述附加电极片连接在功率电极板的功率电极面的边缘。本发明的异形功率电极可以在任意激发频率和任意面积大小的PECVD反应室中采用。这种异形功率电极利用电极功率馈入端口的附加电极改变电极表面电流分布,可以抑制电极馈入端口附近电势的对数奇点效应。
-
公开(公告)号:CN101154695A
公开(公告)日:2008-04-02
申请号:CN200710061325.0
申请日:2007-09-30
Applicant: 南开大学
IPC: H01L31/18
CPC classification number: Y02P70/521
Abstract: 本发明公开了一种利用绒面临时衬底制备柔性转移衬底太阳电池的方法,该方法将金属衬底浸入电解液中进行表面处理,使金属衬底具有绒面结构,然后在绒面金属铝箔上制备前电极、然后激光切割、制备P-I-N层、激光切割、制备背电极、激光切割和层压聚合物衬底,最后再去除金属衬底制成柔性转移衬底太阳电池。所述本发明中作为柔性转移衬底的金属衬底表面平整且具有绒面结构,使在其表面沉积的前电极也随之具有一定的绒度,从而使所制备的太阳电池具有很好的陷光结构,提高太阳电池效率。
-
公开(公告)号:CN1420570A
公开(公告)日:2003-05-28
申请号:CN02159248.9
申请日:2002-12-30
Applicant: 南开大学
IPC: H01L31/04
CPC classification number: Y02E10/50
Abstract: 本发明的名称是宽谱域低温叠层硅基薄膜太阳电池,涉及叠层电池结构的设计,属于太阳电池技术领域。一般的叠层电池或者光电转换效率低,或者工艺复杂,为此本发明在设计电池时,在第(1)个pin的N层与第2个pin电池的P层之间加一特殊增反射层,该增反射层只反射第1个pin电池吸收范围的光,透射第2个pin电池吸收范围的光,在第2个电池pin的N层与金属电极之间加另一个增反射层,负责反射第2个pin电池吸收范围的光,这样,可以提高电池的光电转换效率、减薄吸收层厚度,不容易发生光衰退,大大缩短制备时间,降低成本。
-
公开(公告)号:CN102199758B
公开(公告)日:2012-12-12
申请号:CN201110122983.2
申请日:2011-05-13
Applicant: 南开大学
IPC: C23C14/54 , C23C14/08 , C23C14/35 , H01L31/0224
Abstract: 一种生长绒面结构ZnO-TCO薄膜的方法,以玻璃衬底为基片,以纯度99.995%的Zn-Al合金靶为靶材原料,溅射气体为Ar气,溅射过程中引入氧气且在溅射镀膜周期中氧气流量呈梯度变化,利用磁控溅射镀膜技术制备绒面结构ZnO-TCO薄膜。本发明的优点:相比于通常溅射技术获得的绒面结构ZnO-TCO薄膜,利用梯度氧气流量法获得的薄膜具有较好的透过率,并且维持较好的电学特性,此外薄膜的绒面结构取得明显改善;该ZnO-TCO薄膜应用于微晶硅薄膜电池或非晶硅/微晶硅叠层薄膜太阳电池,可提高光散射作用,增加入射光程,有效降低有源层厚度,提高Si基薄膜太阳电池的效率和稳定性。
-
公开(公告)号:CN102220565A
公开(公告)日:2011-10-19
申请号:CN201110156698.2
申请日:2011-06-13
Applicant: 南开大学
Abstract: 一种用于硅薄膜电池陷光结构研究的化学气相沉积设备,包括镀膜装置和气体管路,镀膜装置包括镀膜室和装片室,镀膜室内设有衬底、加热器和带筛孔的气盒,装片室设有内部的层式样品架、侧面样品推动杆和顶部的层式样品架升降机构,镀膜室和装片室分别通过管道与真空泵组抽气管道连接;在O2/CO2、B2H6和Ar气携带H2O气或DEZn的气体管路中分别设有进、出口阀、流量计、水密封储罐和DEZn密封储罐并通过管道进入镀膜室。本发明的优点:该化学气相沉积设备,可对样品进行大面积的镀膜并实现源材料的多种选择,提高镀膜效率;可控制薄膜的具体生长过程,操作简单且可靠稳定,提高硅薄膜太阳电池的性能,具有重大的生产实践意义。
-
公开(公告)号:CN101777591B
公开(公告)日:2011-05-04
申请号:CN200910245205.5
申请日:2009-12-30
Applicant: 南开大学
IPC: H01L31/042 , H01L31/028
CPC classification number: Y02E10/50
Abstract: 一种全谱域叠层硅基薄膜太阳电池,由三个硅基薄膜太阳电池叠加沉积在衬底上制成,其中第一个p-i-n是宽带隙硅基薄膜电池,第二个p-i-n电池是中间带隙硅基薄膜太阳电池,第三个p-i-n电池是窄带隙硅基薄膜太阳电池,其采用硅、锗合金型窄带隙材料作为吸收层,带隙为(0.66~1.1)eV、厚度为(1000~3000)nm。本发明的优点是:结构新颖,窄带隙材料采用硅、锗合金型,通过与其它硅基薄膜合金材料的组合,使不同吸收层材料的带隙为2.0eV~0.66eV,可实现叠层电池的电流最佳匹配,实现硅基薄膜电池对太阳光谱300nm~1800nm的全谱域响应,提高了电池的光电转换效率。
-
公开(公告)号:CN101550544B
公开(公告)日:2011-05-04
申请号:CN200910068786.X
申请日:2009-05-11
Applicant: 南开大学
Abstract: 一种改善高速沉积微晶硅材料中非晶孵化层的方法,公开了一种改善高速沉积本征微晶硅薄膜中起始非晶孵化层的方法:将衬底放在真空室内,采用等离子体增强化学气相沉积或者热丝化学气相沉积技术在衬底上沉积高速率本征微晶硅薄膜;采用改变沉积过程中加热温度的办法来改变反应前驱物在衬底表面的迁移能力,进而来改变高速率材料初期的非晶孵化层。本发明有益效果是:通过改变沉积高速率微晶硅材料时的加热温度,而达到对反应前驱物在衬底表面迁移时间的控制,进而达到改善材料非晶硅孵化层厚度的效果。
-
公开(公告)号:CN101373669B
公开(公告)日:2011-03-23
申请号:CN200810152279.X
申请日:2008-10-10
Applicant: 南开大学
CPC classification number: Y02E10/542 , Y02E10/549
Abstract: 本发明公开一种染料敏化太阳电池用有上转换功能的纳米多孔半导体薄膜,纳米多孔半导体薄膜,是由染料敏化纳米太阳电池用的常规纳米多孔半导体薄膜和具有上转换功能的上转换材料的组合,或是采用化学的或物理的方法直接合成具有上转换功能的纳米多孔半导体薄膜。常规纳米多孔半导体薄膜和上转换材料的组合,是通过机械搅拌或超声混合的方式组合成纳米多孔半导体薄膜,或是直接将稀土离子掺入到常规的纳米多孔半导体薄膜中,形成具有上转换功能的纳米多孔半导体薄膜。上转换材料和常规纳米多孔半导体薄膜之间的比例为0.01-1之间。本发明可将红外光上转换为染料敏化纳米材料易于吸收的可见光,可以有利于增强染料分子吸收更宽谱域的太阳光,这样将进一步提高电池的光电转换效率。
-
公开(公告)号:CN101510577B
公开(公告)日:2010-12-29
申请号:CN200910068279.6
申请日:2009-03-27
Applicant: 南开大学
CPC classification number: Y02P70/521
Abstract: 本发明提出一种在聚对苯二甲酸乙二酯塑料(PET)廉价塑料衬底上低温沉积柔性非晶硅薄膜太阳电池的技术,方法是:首先采用等离子体辉光对PET塑料薄膜进行预处理,以实现硅基薄膜电池所需求的衬底表面形貌;采用高压高氢稀释相结合的方式,在125℃温度下优化非晶硅薄膜材料及电池的性能;在PET塑料衬底上获得了转换效率达到5.4%的柔性非晶硅太阳电池。本发明的优点是:采用廉价的聚对苯二甲酸乙二酯塑料代替昂贵的聚酰亚胺作塑料衬底,成本低廉,性能完全达到使用要求;非晶硅电池部分p、i、n三层均采用低温的制备工艺,沉积温度不超过125℃,在制备过程中能耗大大减少,使得太阳电池的制造成本大大降低。
-
-
-
-
-
-
-
-
-