-
公开(公告)号:CN117237677A
公开(公告)日:2023-12-15
申请号:CN202311518546.1
申请日:2023-11-15
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G06V10/74 , G01W1/10 , G06N3/0464 , G06N3/0475 , G06N3/094 , G06N3/0455 , G06T7/62 , G06T7/60 , G06T7/73
Abstract: 本发明公开了一种基于深度学习的强降水空间整体相似度的降水预报订正方法,包括以下步骤:(1)利用YOLOv5对降水属性进行识别;(2)建立基于GAN的降水预报订正模型;(3)建立基于GAN且融合降水空间特征的强降水订正模型O‑GAN;(4)将测试期的数值模式预报数据代入模型O‑GAN,生成后处理之后的降水预报;本发明有效提高了传统仅优化逐点误差模型的订正技巧;实现了从降水图片到降水雨团空间属性的“端到端”输出,提高客观识别效率;避免了传统逐点订正模型可能出现的预报模糊化问题,同时能够有效捕捉强降水特征,提高降水预报准确率。
-
公开(公告)号:CN117233870A
公开(公告)日:2023-12-15
申请号:CN202311518550.8
申请日:2023-11-15
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G01W1/10 , G06F30/27 , G06F18/214 , G06F119/02
Abstract: 本发明公开了一种基于多气象要素的短临降水集合预报及降尺度方法,包括以下步骤:(1)收集自动气象站逐10分钟站点观测数据;生成格点场数据(2)基于格点场数据,建立用于深度学习模型训练的标准气象序列数据集,并进行归一化处理;(3)构建耦合卷积神经网络‑循环神经网络‑对抗生成神经网络的深度学习模型,利用标准气象序列数据集针对降水进行训练,并通过在网络中增加噪声,生成集合预报;(4)利用超分辨率对生成的降水预报进行降尺度,获得高时空分辨率的短临降水集合预报;本发明将卷积神经网络、循环神经网络与对抗生成神经网络结合,提高了模型的预报真实性;利用超分辨率技术,提高降水预报准确率。
-
公开(公告)号:CN115857062B
公开(公告)日:2023-06-13
申请号:CN202310174997.1
申请日:2023-02-28
Applicant: 南京信息工程大学 , 南京气象科技创新研究院
IPC: G01W1/10 , G06N3/0464 , G06N3/096
Abstract: 本发明公开了一种基于多通道卷积神经网络的次季节台风生成预报方法,包括以下步骤:(1)统计台风逐周生成频次,对台风频次进行数据重组,提取不同时间尺度的周期性信号,并过滤多余的噪声;(2)基于信息流方法诊断各时间尺度周期性信号的可预测性来源构建掩膜场;(3)搭建多通道卷积神经网络模型,基于再分析资料构建的训练集对模型展开训练;(4)基于采集到的数值模型预报数据展开迁移学习,得到最终的预报模型;(5)将预设时间内的预报数据代入模型,生成次季节台风生成预报;本发明提升次季节台风生成预报技巧;有效滤除大尺度因子场中的多余噪音,进而有效提高模型预报效果。
-
公开(公告)号:CN118604919B
公开(公告)日:2024-12-06
申请号:CN202411068531.4
申请日:2024-08-06
Applicant: 南京气象科技创新研究院
IPC: G01W1/18 , G01W1/02 , G01W1/08 , G06N3/0464 , G06N3/0442 , G06N3/045 , G06F18/15 , G06F18/213
Abstract: 本发明公开了基于全天候天气背景的微波辐射计温湿廓线联合校正方法,包括:获取微波辐射计测量数据与无线电探空仪探测数据,进行数据清洗与标准化预处理;对影响微波辐射计测量精度的全天候天气背景因子特征进行标注,生成对应特征向量,形成无量纲的全天候天气背景因子库;采用引入一致性损失的联合损失函数,构建并训练融合微波辐射计测量、全天候天气背景及无线电探空仪探测的多层感知卷积长短期记忆网络深度学习模型;针对目标时间,基于微波辐射计测量与全天候天气背景特征,产生校正后的温湿度廓线反演结果。本发明提高了局地温度、湿度反演的一致性,能够准确、高效地实现对微波辐射计温湿廓线测量反演的联合校正,具有极高的应用价值。
-
公开(公告)号:CN118501986A
公开(公告)日:2024-08-16
申请号:CN202410957391.X
申请日:2024-07-17
Applicant: 南京气象科技创新研究院
Abstract: 本发明涉及大气科学研究领域,具体公开了一种基于多模式集成的灾害性大风空间结构预报改进方法。其包括如下步骤:对预报区域内的观测以及模式预报灾害性大风对象进行识别;分别计算识别出的观测场和模式预报场中灾害性大风对象的属性;将观测场中的灾害性大风对象与模式预报场中的灾害性大风对象进行匹配;并评估观测场与模式预报场中所有灾害性大风对象的整体空间相似度;以观测场与模式预报场中所有灾害性大风对象的空间相似度为权重,构建多模式集成预报模型。本发明通过分析灾害性大风的空间结构特征并改进多模式集成模型权重的计算方法,从而提高灾害性大风空间结构的数值预报技巧。
-
公开(公告)号:CN119106949A
公开(公告)日:2024-12-10
申请号:CN202411589294.6
申请日:2024-11-08
Applicant: 南京气象科技创新研究院
IPC: G06Q10/0637 , G01W1/10 , G01W1/18 , G06Q50/26 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了融合精细地形特征的延伸期降水连续分布概率预报方法,包括:获取标准化的延伸期数值模式集合预报系统多成员多要素预报数据以及区域历史长时间序列降水观测数据,并提取历史降水连续分布特征;基于区域高分辨率精细地形数据,得到去尺度化的关键地形多维特征因子库;构建极限梯度提升U‑Net混合深度学习降水概率预报模型,并展开模型训练和优化;采用训练好的模型,产生改进的延伸期降水连续分布概率预报结果。本发明融合了精细地形数据,采用了加权交叉熵损失函数,有效处理了降水分布类别不平衡问题,提升了模型的泛化能力,改进了降水连续分布概率预报的预报性能,具有极高的应用价值。
-
公开(公告)号:CN114880958B
公开(公告)日:2022-10-11
申请号:CN202210812014.8
申请日:2022-07-12
Applicant: 南京气象科技创新研究院
Abstract: 本发明公开了一种基于多气象因子智能深度学习的能见度预报模型,主要包括数值预报模式选取、空间网格点多气象因子建模、特征提取与能见度映射、神经网络模型训练和能见度预报与模型参数更新等步骤,本发明利用深度学习技术结合数值预报及多气象因子建模,能实现对关键地区的精细化能见度预报。
-
公开(公告)号:CN119249075A
公开(公告)日:2025-01-03
申请号:CN202411777755.2
申请日:2024-12-05
Applicant: 南京气象科技创新研究院
IPC: G06F18/10 , G06F18/214 , G06F18/21 , G06F18/2433 , G06N3/0442 , G06N3/084
Abstract: 本发明公开了基于物理约束的高速公路路面温度预报方法,包括以下步骤:收集并预处理区域内所有站点的气象数据、路面温度的历史观测数据及地理数据,加入时间信息构建时间特征;搭建U‑net神经网络模型,对多站点多气象要素预报数据进行空间场数据订正,输出各站点的订正后气象数据;在U‑net模型基础上构建双向LSTM网络,处理时间序列数据,使用损失函数评估和优化模型性能;在模型中加入物理约束,包括温度变化的时间关系、季节性与日夜变化特征、材料热特性、热平衡方程等,优化模型结果;使用测试集评估模型的泛化能力和预报精度,微调模型参数。该方法显著提高了路面温度预测的精度和可靠性,为交通管理和安全预警提供了可靠依据。
-
公开(公告)号:CN117994545A
公开(公告)日:2024-05-07
申请号:CN202410406797.9
申请日:2024-04-07
Applicant: 南京气象科技创新研究院
Abstract: 本发明公开了一种基于图像匹配概率的气象要素预报误差综合评估方法,利用单体匹配的概率来计算气象要素分布结构特征预报误差,本发明将气象要素预报误差订正由物理模型抽象为图形和数学模型,相较于现有技术采用拟合椭圆方法,仅考虑要素空间分布,并不可避免的引入误,本发明利用单体间相似程度引入了匹配概率,利用匹配概率,考虑预报场相对于观测场的整体误差,无需定义空报率或漏报率,避免的相关误差的引入,提高了气象要素预报误差综合评估的准确率。
-
公开(公告)号:CN114880958A
公开(公告)日:2022-08-09
申请号:CN202210812014.8
申请日:2022-07-12
Applicant: 南京气象科技创新研究院
Abstract: 本发明公开了一种基于多气象因子智能深度学习的能见度预报模型,主要包括数值预报模式选取、空间网格点多气象因子建模、特征提取与能见度映射、神经网络模型训练和能见度预报与模型参数更新等步骤,本发明利用深度学习技术结合数值预报及多气象因子建模,能实现对关键地区的精细化能见度预报。
-
-
-
-
-
-
-
-
-