-
公开(公告)号:CN118604919B
公开(公告)日:2024-12-06
申请号:CN202411068531.4
申请日:2024-08-06
Applicant: 南京气象科技创新研究院
IPC: G01W1/18 , G01W1/02 , G01W1/08 , G06N3/0464 , G06N3/0442 , G06N3/045 , G06F18/15 , G06F18/213
Abstract: 本发明公开了基于全天候天气背景的微波辐射计温湿廓线联合校正方法,包括:获取微波辐射计测量数据与无线电探空仪探测数据,进行数据清洗与标准化预处理;对影响微波辐射计测量精度的全天候天气背景因子特征进行标注,生成对应特征向量,形成无量纲的全天候天气背景因子库;采用引入一致性损失的联合损失函数,构建并训练融合微波辐射计测量、全天候天气背景及无线电探空仪探测的多层感知卷积长短期记忆网络深度学习模型;针对目标时间,基于微波辐射计测量与全天候天气背景特征,产生校正后的温湿度廓线反演结果。本发明提高了局地温度、湿度反演的一致性,能够准确、高效地实现对微波辐射计温湿廓线测量反演的联合校正,具有极高的应用价值。
-
公开(公告)号:CN118604919A
公开(公告)日:2024-09-06
申请号:CN202411068531.4
申请日:2024-08-06
Applicant: 南京气象科技创新研究院
IPC: G01W1/18 , G01W1/02 , G01W1/08 , G06N3/0464 , G06N3/0442 , G06N3/045 , G06F18/15 , G06F18/213
Abstract: 本发明公开了基于全天候天气背景的微波辐射计温湿廓线联合校正方法,包括:获取微波辐射计测量数据与无线电探空仪探测数据,进行数据清洗与标准化预处理;对影响微波辐射计测量精度的全天候天气背景因子特征进行标注,生成对应特征向量,形成无量纲的全天候天气背景因子库;采用引入一致性损失的联合损失函数,构建并训练融合微波辐射计测量、全天候天气背景及无线电探空仪探测的多层感知卷积长短期记忆网络深度学习模型;针对目标时间,基于微波辐射计测量与全天候天气背景特征,产生校正后的温湿度廓线反演结果。本发明提高了局地温度、湿度反演的一致性,能够准确、高效地实现对微波辐射计温湿廓线测量反演的联合校正,具有极高的应用价值。
-