基于LiDAR数据与正射影像的停车场结构提取方法

    公开(公告)号:CN102938064B

    公开(公告)日:2015-06-17

    申请号:CN201210483627.8

    申请日:2012-11-23

    Applicant: 南京大学

    Abstract: 本发明涉及一种基于LiDAR数据与正射影像的停车场结构提取方法,该方法利用LiDAR数据将停车场分为空地区域和非空地区域,从LiDAR数据中生成非空地区域的车辆面片的中轴线,从正射影像数据中得到空地区域中的停车场车位线;套合非空地区域中的车辆中轴线和空地区域中的车位线,依其最大相交方向划分停车道;计算停车场结构参数,生成停车道的分割线,完成对停车场结构的提取。该方法能够解决停车场结构提取过程中面临的光照变化、阴影效应、透视变形以及车辆遮盖等问题,准确且高精度地提取停车场的结构。

    一种基于仿射不变特征与海岸线约束的海岸带遥感影像自动配准方法

    公开(公告)号:CN102750696B

    公开(公告)日:2014-07-16

    申请号:CN201210185091.1

    申请日:2012-06-06

    Applicant: 南京大学

    Abstract: 基于仿射不变特征与海岸线约束的海岸带遥感影像自动配准方法,其步骤为:海岸线及陆地区域影像提取;生成SIFT特征点及特征向量;SIFT特征点匹配;计算单应矩阵;将对应海岸线重叠,计算海岸线对之间的平均横截线距离;调整RANSAC方法的距离阈值,并重新计算海岸线对之间的横截线距离;以横截线距离突变前一个实例作为最优实例,该最优实例单应矩阵即为最优单应矩阵;利用最优单应矩阵完成影像配准。本发明克服了由于海岸带影像陆地特征复杂、水域特征缺失造成的影像配准困难的问题,能够有效地进行海岸带遥感影像的自动配准,配准精度和自动化程度较高。

    一种像素级SAR影像时间序列构建的局部自适应配准方法

    公开(公告)号:CN103236067A

    公开(公告)日:2013-08-07

    申请号:CN201310172271.0

    申请日:2013-05-10

    Applicant: 南京大学

    Abstract: 本发明涉及一种像素级SAR影像时间序列构建的局部自适应配准方法,方法如下:数据预处理之后从主从影像上提取同名特征点对,使用最小二乘法计算二次多项式参数并计算匹配总体误差,然后比较匹配总体误差与给定阈值的大小,若匹配总体误差小于或等于给定阈值,则从影像与主影像的位置关系由上述二次多项式确定,最后进行影像配准;反之,若总误差大于给定阈值,则进行误差点聚类获取畸变区域,将主、从影像的正常区域作为一对新主从影像,畸变区域作为另一对新主从影像,对两对新的主、从影像重复计算二次多项式参数及以后的步骤,直至所有新主、从影像的同名特征点对匹配总体误差小于给定阈值,然后进行影像配准。

    一种基于建筑物轮廓约束的航空与地面LiDAR数据自动配准方法

    公开(公告)号:CN103020966A

    公开(公告)日:2013-04-03

    申请号:CN201210512359.8

    申请日:2012-12-04

    Applicant: 南京大学

    Abstract: 一种基于建筑物轮廓约束的航空与地面LiDAR数据自动配准方法:首先分别从航空、地面LiDAR数据中提取建筑物轮廓,简称航空轮廓、地面轮廓;再从航空轮廓、地面轮廓中提取出建筑物角点,简称航空角点、地面角点;然后以航空轮廓与地面轮廓间的匹配度为约束,计算航空角点与地面角点之间初始转换矩阵,并获取初始匹配角点对;最后使用ICP算法计算初始匹配角点对之间的修正转换矩阵,并用初始转换矩阵和修正转换矩阵依次对待匹配地面点云数据进行转换,实现航空与地面LiDAR数据的自动高精度配准。本发明使用轮廓线做约束,在配准的可靠性与精确性方面都有很大的优势;同时,本发明仅从待匹配LiDAR数据与基准LiDAR数据出发,无需借助其他辅助数据便可实现两者之间的精确配准。

    一种基于仿射不变特征与海岸线约束的海岸带遥感影像自动配准方法

    公开(公告)号:CN102750696A

    公开(公告)日:2012-10-24

    申请号:CN201210185091.1

    申请日:2012-06-06

    Applicant: 南京大学

    Abstract: 基于仿射不变特征与海岸线约束的海岸带遥感影像自动配准方法,其步骤为:海岸线及陆地区域影像提取;生成SIFT特征点及特征向量;SIFT特征点匹配;计算单应矩阵;将对应海岸线重叠,计算海岸线对之间的平均横截线距离;调整RANSAC方法的距离阈值,并重新计算海岸线对之间的横截线距离;以横截线距离突变前一个实例作为最优实例,该最优实例单应矩阵即为最优单应矩阵;利用最优单应矩阵完成影像配准。本发明克服了由于海岸带影像陆地特征复杂、水域特征缺失造成的影像配准困难的问题,能够有效地进行海岸带遥感影像的自动配准,配准精度和自动化程度较高。

    基于动态时间弯曲的时序SAR影像耕地提取方法

    公开(公告)号:CN104008552B

    公开(公告)日:2017-01-25

    申请号:CN201410266813.5

    申请日:2014-06-16

    Abstract: 本发明涉及一种基于动态时间弯曲的时序SAR影像耕地提取方法,步骤包括:构建时序SAR影像;提取耕地参考时间序列;计算待分类像元时间序列与耕地参考时间序列之间的动态时间弯曲距离;计算结果阈值分割,待分类像元归类为耕地与非耕地;分割结果空域滤波,滤除孤立的耕地像元,填补连片耕地之间的缝隙,得到耕地的最终提取结果。本发明考虑到耕地时间序列特有的“时间轴弯曲”现象,使用动态时间弯曲距离(DTW)作为相似性度量标准,从而实现耕地像元与非耕地像元的划分,解决了传统方法无法适应时间轴畸变的时间序列相似性度量这一问题,提高了耕地的提取精度。本发明方法适应性强,提取精度可达82%以上,能够满足实际生产的需要。

    基于像素级SAR影像时间序列相似性分析的水体提取方法

    公开(公告)号:CN103440489B

    公开(公告)日:2017-01-11

    申请号:CN201310423428.2

    申请日:2013-09-16

    Applicant: 南京大学

    Abstract: 本发明涉及一种像素级SAR影像时间序列的水体提取方法,该方法首先,对SAR影像数据集进行预处理,经过高精度匹配,构建像素级SAR影像时间序列,生成时间序列文本数据;其次,采样选取纯净水体像元和混合水体像元的时间序列,选取DTW作为时间序列的相似性度量,计算其DTW值作为最大阈值;然后计算所有像元的像素级SAR影像时间序列与纯净水体像元时间序列的DTW值,采用最大阈值方法分割SAR影像,获取二值图像;最后,采用8邻域搜索方法对二值图像进行操作以提高水体识别精度。该方法能够准确提取稳定的水资源分布范围,提取结果不受山体阴影、雨季积水及部分植被的影响,能够满足水体制图的要求。

    SAR影像时空相似性分析下的城市不透水面提取方法

    公开(公告)号:CN103440490B

    公开(公告)日:2016-10-19

    申请号:CN201310423429.7

    申请日:2013-09-16

    Applicant: 南京大学

    Abstract: 本发明SAR影像时空相似性分析下的城市不透水面提取方法,首先对SAR影像数据集进行预处理,经过高精度匹配,构建像素级SAR影像时间序列;其次,采用动态时间弯曲(DTW)作为像素级SAR影像时间序列的相似性度量,计算采样混合像元与纯净像元的DTW值作为相似性提取的最大阈值,利用基于时间序列相似度的空间上下文分析方法,充分顾及相同地物像元时间序列较好的相似性和的空间的邻近性特征,以典型地物纯净像元的时间序列曲线为模板窗口,采用滑动窗口技术,分别计算模板窗口与滑动窗口内对应的时间序列曲线的DTW值,并采用像元的空间邻近规则从而确定中心像元的地物类型。该方法能够改善地物提取破碎现象,提高城市不透水面的信息提取精度。

    一种主方向约束下的停车场结构提取方法

    公开(公告)号:CN102968634B

    公开(公告)日:2016-08-03

    申请号:CN201210482430.2

    申请日:2012-11-23

    Applicant: 南京大学

    Abstract: 一种主方向约束下的停车场结构提取方法,步骤包括:针对航空正射影像,使用Edison算法和Hough变换进行初始线段检测,获取车位线主方向;根据获取的主方向,使用主方向约束下的线段提取方法,检测出准确车位线;根据车位线角度对车位线进行编组筛选,并使用最大相交方向方法划分停车道;利用提取的车位线和划分的停车道,计算停车场的结构参数;依据停车场结构参数重新构建停车场的准确车位线,并生成停车道的分割线,完成停车场结构的自动提取。本发明利用初始线段检测获取车位线的主方向,以此作为约束进行车位线提取,提取的车位线正确性、完整性和定位精度都较高,能够更好地为停车场结构的提取提供依据。本发明以单景航空正射影像为数据进行停车场结构提取,数据获取容易,价格适宜。

    一种从地面LiDAR数据中提取建筑物轮廓和角点的方法

    公开(公告)号:CN103020342B

    公开(公告)日:2015-07-15

    申请号:CN201210512462.2

    申请日:2012-12-04

    Applicant: 南京大学

    Abstract: 本发明涉及一种从地面LiDAR数据中提取建筑物轮廓和角点的方法,首先使用分层次的格网密度方法从地面LiDAR数据中提取建筑物轮廓;在此基础上使用轮廓延伸密度方法对提取的建筑物轮廓进行恢复,即得到完整的建筑物轮廓;若需提取角点则将完整的建筑物轮廓投影到三维坐标系的XY平面内寻找二维相交点,如果任两条构成相交点的轮廓的高程差小于1m,则判定两条轮廓在实际的三维空间中相交,两条轮廓的相交点为一个地面角点,并将所述两条轮廓的高程均值作为该地面角点的高程。本发明所用的格网密度方法、格网密度阈值的理论估计确定方法、轮廓密度延伸的方法,保证了从地面LiDAR数据中提取准确的建筑物轮廓线段和高精度的地面角点;并且实现了自动化提取,大大提高了数据处理效率。

Patent Agency Ranking