集成高光谱数据和稀疏声纳数据的浅水水下地形构建方法

    公开(公告)号:CN102855609B

    公开(公告)日:2014-10-01

    申请号:CN201210268170.9

    申请日:2012-07-30

    Applicant: 南京大学

    Abstract: 本发明涉及一种集成高光谱数据和稀疏声纳数据的浅水水下地形构建方法,属于水下地形勘测技术领域。本发明首先借助声纳数据的聚类中心点对高光谱遥感影像进行降维,然后对降维后的低维遥感影像进行区域划分,最后在各区域内部对声纳数据进行插值得到水下地形。本发明将高光谱遥感影像与稀疏声纳数据进行了有机结合,在整个过程中,两种数据作为一种互补,很好地解决了水下地形构建的问题。经过几何校正的遥感影像和声纳数据都具备坐标信息,并且遥感影像的灰度与水深存在一定的模糊对应关系,因此划区后的遥感影像中,各水深均质区域内水深变换较小,声纳数据插值结果更真实。

    集成高光谱数据和稀疏声纳数据的浅水水下地形构建方法

    公开(公告)号:CN102855609A

    公开(公告)日:2013-01-02

    申请号:CN201210268170.9

    申请日:2012-07-30

    Applicant: 南京大学

    Abstract: 本发明涉及一种集成高光谱数据和稀疏声纳数据的浅水水下地形构建方法,属于水下地形勘测技术领域。本发明首先借助声纳数据的聚类中心点对高光谱遥感影像进行降维,然后对降维后的低维遥感影像进行区域划分,最后在各区域内部对声纳数据进行插值得到水下地形。本发明将高光谱遥感影像与稀疏声纳数据进行了有机结合,在整个过程中,两种数据作为一种互补,很好地解决了水下地形构建的问题。经过几何校正的遥感影像和声纳数据都具备坐标信息,并且遥感影像的灰度与水深存在一定的模糊对应关系,因此划区后的遥感影像中,各水深均质区域内水深变换较小,声纳数据插值结果更真实。

    一种基于中值滤波的中分辨率遥感影像离散点DEM构建方法

    公开(公告)号:CN102436679B

    公开(公告)日:2014-04-30

    申请号:CN201110423561.9

    申请日:2011-12-16

    Applicant: 南京大学

    Abstract: 本发明属于中分辨率遥感影像离散点DEM构建方法领域,公开了一种基于中值滤波的中分辨率遥感影像离散点DEM构建方法。它包括以下步骤:步骤1:计算卫星成像时刻潮高信息;步骤2:离散卫星成像时刻提取的矢量水边线,步骤3:合并上述步骤离散的等距潮位点,根据遥感影像分辨率构建中值滤波的参考格网,并对所有离散的等距潮位点进行标号,标明其所属格网ID;步骤4:遍历所有格网;步骤5:在中值滤波结果的基础上利用线性内插构建最终的DEM结果。本发明的方法通过中值滤波的方法有效地利用了落在格网内所有离散点的高程信息,提高了离散点高程精度。

    一种基于LiDAR数据的建筑物区域提取方法

    公开(公告)号:CN102520401B

    公开(公告)日:2013-05-08

    申请号:CN201110432421.8

    申请日:2011-12-21

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于LiDAR数据的建筑物区域提取方法,属于LiDAR数据提取建筑物的方法领域。其步骤包括:LiDAR数据前期处理;对原始LiDAR数据重采样;反向迭代数学形态学滤波;分离建筑物与密集树木。本发明直接对3D点云数据进行处理,而不是将点云转化为深度图像,避免了转化过程中信息的损失和转化过程中增加的计算量;同时通过反向渐进迭代使用不同窗口进行数学形态学滤波操作,基本消除了地形起伏对数学形态学滤波中建筑物提取的影响,能取得较高的提取精度;本发明能够从大范围的LiDAR数据中快速、准确地提取出属于建筑物区域的LiDAR点,能够为城市的三维建模提供可靠的数据支持。

    一种面向对象的遥感影像海岸线提取方法

    公开(公告)号:CN102013015B

    公开(公告)日:2013-03-06

    申请号:CN201010572413.9

    申请日:2010-12-02

    Applicant: 南京大学

    Abstract: 本发明公开了一种面向对象的遥感影像海岸线提取方法,属于全自动遥感影像海岸线提取领域。其步骤为:遥感影像滤波处理;选择分割算法对遥感影像进行分割;利用样本点对分割后的遥感影像进行分类;利用种子生长的方法提取出海水区域;最后利用相应的判别准则提取海岸线。本发明提高了现有海岸线提取算法的准确性,通过面向对象的方法经过分割分类处理提高了海水提取的正确率,保证了海岸线提取的准确性。由于海岸线变化较为频繁,本发明为国家各级基础地理信息数据库海岸线信息的维护与更新提供便利。

    一种海岸带水体遥感信息全自动提取方法

    公开(公告)号:CN102054274B

    公开(公告)日:2012-08-22

    申请号:CN201010566910.8

    申请日:2010-12-01

    Applicant: 南京大学

    Abstract: 本发明公开了一种海岸带水体遥感信息全自动提取方法,属于遥感信息全自动提取方法领域。其步骤包括遥感影像分割、水体信息粗提取和水体信息精提取三个阶段,过程中进行了两次尺度转换,其一为从像元到对象的转换,属于自下向上的尺度转换,其二为从全域到局部的转换,属于自上向下的尺度转换。相较现有技术,本发明实现了一种在尺度转换框架中融入地学知识和数据挖掘相结合的方法,整个方法具有零样本、零参数的特性,完全自动化运行。本发明能够适应各海域多类型海岸带环境,具有较好的稳定性,其提取结果精度较高,对细节信息的提取完整性和连续性均优于经典方法,能够直接应用于国家各级基础地理信息数据库遥感专题信息的维护与更新。

    一种面向对象的遥感影像海岸线提取方法

    公开(公告)号:CN102013015A

    公开(公告)日:2011-04-13

    申请号:CN201010572413.9

    申请日:2010-12-02

    Applicant: 南京大学

    Abstract: 本发明公开了一种面向对象的遥感影像海岸线提取方法,属于全自动遥感影像海岸线提取领域。其步骤为:遥感影像滤波处理;选择分割算法对遥感影像进行分割;利用样本点对分割后的遥感影像进行分类;利用种子生长的方法提取出海水区域;最后利用相应的判别准则提取海岸线。本发明提高了现有海岸线提取算法的准确性,通过面向对象的方法经过分割分类处理提高了海水提取的正确率,保证了海岸线提取的准确性。由于海岸线变化较为频繁,本发明为国家各级基础地理信息数据库海岸线信息的维护与更新提供便利。

Patent Agency Ranking