-
公开(公告)号:CN102593467A
公开(公告)日:2012-07-18
申请号:CN201210055496.3
申请日:2012-03-05
Applicant: 北京科技大学
Abstract: 一种高电导率双钙钛矿型阳极材料及其制备方法,属固体氧化物燃料电池领域,通过对双钙钛矿型(A2BB′O6)固体氧化物燃料电池阳极材料Sr2MgMoO6的B位进行Y的掺杂而形成一种双钙钛矿结构的混合导体。将B位掺杂的Sr2Mg1-xYxMoO6(x=0.1-0.2)的粉体在一定的压力下压制成试样条,在空气气氛下高温烧结,还原条件下还原后进行电导率的测量,其电导率比掺杂前提高了5.8倍(x=0.2)。同时制备了多孔薄膜型Sr2Mg1-xYxMoO6(x=0.1-0.2)阳极材料,该材料与电解质GDC、LSGM具有较好的结合性和化学相容性,且具有比传统的阳极材料Ni/YSZ更高的抗碳沉积和硫中毒能力。
-
公开(公告)号:CN102437319A
公开(公告)日:2012-05-02
申请号:CN201110444911.X
申请日:2011-12-27
Applicant: 北京科技大学
Abstract: 一种用于锂离子电池的负极材料及其制备方法,属锂离子电池技术领域。本发明采用碳热还原法合成InSn以及InSn/C负极材料。以氧化物SnO2和In2O3以及还原剂碳为原料,三者按摩尔比8:1:19或者38:1:79配料,以水或乙醇或丙酮或他们之间的混合液体为介质,球磨、烘干后,将混合均匀的SnO2-In2O3-C混合物在惰性气氛中、800~1100℃煅烧0.5~12小时。然后冷却到室温,得到目标产物InSn粉体。该产物作为锂离子电池负极材料,可以直接使用,或者球磨后使用。将球磨或不球磨的InSn粉体与有机碳源混合,碳的加入量为5-30%(质量百分比),将混合物焦化后,在流动的惰性气氛中、500-800oC热处理0.5-6小时,获得InSn/C复合负极材料。本发明的特点在于,材料的比容量高、安全性好;材料的制备工艺简单,便于规模化制备。
-
公开(公告)号:CN114171808B
公开(公告)日:2024-02-02
申请号:CN202111335168.4
申请日:2021-11-11
Applicant: 北京科技大学
Abstract: 本发明提供一种高能量密度液态金属电池及其制备方法,属于化学储能电池技术领域。本发明采用金属Te与Cu、Ag、Au中的一种形成的Te基合金作为正极材料,碱金属或碱土金属作为负极材料,以及含相应碱金属离子或碱土金属离子的混合熔盐作为电解质材料,构建液态金属电池。该电池具有良好的电化学性能。金属Te作为正极具有高的电压(~1.6 V vs.Li/Li+),将Cu、Ag、Au中的一种引入Te形成合金,可显著减小液态金属Te及其放电产物在熔盐电解质中的溶解,提高金属Te的利用率,改善电池的循环稳定,同时降低电池的工作温度。此外,高电子电导金属的引入提高了Te正极材料的电导率,减小电池的极化,提高电池放电电压,改善电池在大电流密度下的充放电性能。
-
公开(公告)号:CN110790573B
公开(公告)日:2021-01-15
申请号:CN201911168496.2
申请日:2019-11-25
Applicant: 北京科技大学
IPC: C04B35/50 , C04B35/622 , C04B35/626 , C04B35/628 , H01M10/0562
Abstract: 本发明提供了一种石榴石型锂离子固体电解质彻底消除碳酸锂的方法,用以解决现有技术中石榴石型锂离子固体电解质中碳酸锂阻碍电解质烧结致密、降低离子电导率的问题。所述碳酸锂消除方法,是利用旋转包覆和热处理在电解质粉体表面均匀包覆上一层氧化铝,再通过成型和烧结,从而得到消除了碳酸锂的石榴石型锂离子固体电解质。本发明有效增大了氧化铝和电解质粉体表面碳酸锂的接触面积,从而在高温烧结过程氧化铝能够有效消耗粉体中已经存在的碳酸锂,有效提高固体电解质烧结的致密度,提高电解质的离子电导率,同时有利于延长全固态电池的循环寿命,有效减少全固态电池循环过程中的短路风险。
-
公开(公告)号:CN110922187B
公开(公告)日:2020-11-20
申请号:CN201911167109.3
申请日:2019-11-25
Applicant: 北京科技大学
IPC: H01M10/0562 , C04B35/50 , C04B35/622 , C04B35/626 , C04B35/63
Abstract: 本发明提供了一种去除碳酸锂的石榴石型锂离子固体电解质的制备方法。所述制备方法按预定比例称取锂源、镧源、锆源后,将原料球磨、再烘干、干法球磨,得到原料粉末,煅烧后得到石榴石型电解质粉;在电解质粉中加入氧化物,再次球磨混合、烘干并干法球磨,得到含有碳酸锂去除剂的石榴石型锂离子电解质粉;再将粉末成型后高温烧结,得到去除碳酸锂的石榴石型锂离子固体电解质。本发明基于空气气氛,通过加入氧化物在高温下分解粉体中已经存在的碳酸锂,有效去除碳酸锂,提高固体电解质材料的致密度,从而改善固体电解质的离子电导率。该固体电解质可用于锂电池,可提高电池的能量密度,同时增加全固态电池的循环寿命,有效减少全固态电池循环过程中的短路风险。
-
公开(公告)号:CN104857956B
公开(公告)日:2017-03-15
申请号:CN201510164224.0
申请日:2015-04-08
Applicant: 北京科技大学
Abstract: 本发明涉及一种用于制备KA油的自支撑纳米Au催化剂的制备方法,将SrTiO3(111)取向的单晶经过表面结晶化处理和表面洁净化处理后,在5~10W较低的溅射功率和80~100℃的沉积温度下,于SrTiO3基底表面沉积具有(111)取向的单晶Au膜,通过电化学氢剥离的方法将Au膜从基底上剥离,经过蒸干后得到自支撑的二维纳米Au催化剂,并以双氧水为氧化剂在环己烷的液相氧化反应体系中表现出催化活性,使得环己烷的液相氧化反应转化率显著提高。在常规的蒸馏装置、标准大气压强、70℃的情况下,KA油的转化率可以达到40%以上。
-
公开(公告)号:CN104134783A
公开(公告)日:2014-11-05
申请号:CN201410373804.6
申请日:2014-07-31
Applicant: 北京科技大学
IPC: H01M4/136 , H01M4/133 , H01M4/1397 , H01M4/1393
CPC classification number: H01M4/5815 , H01M4/366 , H01M4/625 , H01M10/0525
Abstract: 一种硫化镍/石墨烯复合正极材料的制备方法。首先采用溶剂热方法制备出硫化镍纳米颗粒,通过表面活性剂对硫化镍颗粒表面改性,再与氧化石墨烯在静电吸引作用下复合;采用水合肼将氧化石墨烯还原,最终形成石墨烯封装的纳米硫化镍/石墨烯复合正极材料。石墨烯对硫化镍的分散和封装作用能够有效的缓冲硫化镍在充放电过程中产生的体积膨胀,抑制电极反应过程中产物在电解液中的溶解,从而提高复合材料的循环稳定性。同时,石墨烯提供了良好的导电网络,有利于电子的快速传输,从而减小了电极极化,极大的提高了复合材料的倍率性能。本发明方法制备的硫化镍/石墨烯复合材料具有优异的电化学性能,且制备工艺简单,条件温和,适合大规模工业化生产。
-
公开(公告)号:CN103280560A
公开(公告)日:2013-09-04
申请号:CN201310187373.X
申请日:2013-05-20
Applicant: 北京科技大学
Abstract: 本发明公开了一种锂离子电池介孔氧化亚硅碳复合负极材料的制备方法,属于新材料和电化学领域。本发明是以聚乙烯吡咯烷酮作为辅助模板剂,以有机表面活性剂作为模板剂、有机硅做为硅源,通过水热处理得到介孔氧化硅前驱体,加入碳源,通过高温热处理过程中发生的碳热还原反应,制备出具有介孔结构的SiOx/C复合负极材料。本发明材料的比容量高,结构新颖,同时循环稳定性好。此方法产率高且制备出的SiOx/C复合材料颗粒细小,粒径、成分分布均匀,具有较高的比容量及较好的循环稳定性,是一种理想的锂离子电池复合负极材料,可广泛应用于各种便携式电子设备、电动汽车以及航空航天等领域。
-
公开(公告)号:CN103227324A
公开(公告)日:2013-07-31
申请号:CN201310145924.6
申请日:2013-04-24
Applicant: 北京科技大学
Abstract: 本发明公开了一种锂离子电池用氧化铁负极材料的制备方法,属于新材料和电化学领域。本发明采用溶胶-凝胶法和常压干燥工艺制备具有干凝胶或气凝胶结构的氧化铁前驱体,并通过热处理工艺,制备出氧化铁负极材料。本发明还通过碳包覆工艺制备铁氧化物/碳复合材料。本发明的优点在于制备的材料颗粒粉体细小且均匀,制备工艺过程简单,条件温和,成本较低,便于规模化制备。此方法制备的氧化铁负极材料及铁氧化物/碳复合负极材料具有较高的循环比容量、以及良好的循环稳定性,是一种理想的锂离子电池负极材料,在便携式电子设备、电动汽车以及航空航天等领域具有潜在应用前景。
-
公开(公告)号:CN103208625A
公开(公告)日:2013-07-17
申请号:CN201310145956.6
申请日:2013-04-24
Applicant: 北京科技大学
Abstract: 一种锂离子电池用四氧化三铁/碳复合负极材料的制备方法,属于新能源材料和电化学领域。本发明以无机铁盐为铁源,碳质基质为载体,采用溶剂热法制备出具有纳米多孔结构的Fe3O4/C复合负极材料。将碳质基质直接引入反应液中,在溶剂热过程中发生碳颗粒球形化结构转变过程,纳米铁氧化物活性物质被吸附于多孔碳颗粒表面,形成具有镶嵌结构的Fe3O4/C复合负极材料;碳基质一方面固定纳米氧化铁颗粒,改善电极结构稳定性,另一方面碳基质形成导电网络,有利于电子的快速传输,从而减小了电极极化,提高电极倍率性能。本发明合成的Fe3O4/C复合负极材料颗粒粉体细小且分布均匀,制备工艺过程简单,条件温和,成本低,具有优异的电化学性能。
-
-
-
-
-
-
-
-
-