一种用氢化钛粉制备TiAl金属间化合物粉末的方法

    公开(公告)号:CN102825259B

    公开(公告)日:2015-03-11

    申请号:CN201210354102.4

    申请日:2012-09-21

    Abstract: 本发明属于粉末冶金技术领域,涉及一种用氢化钛粉制备TiAl金属间化合物粉末的方法。其制备步骤如下:按照Ti、Al原子比为1:1称量氢化钛粉和铝粉,经高能球磨机球磨混合均匀,其过程添加甲苯为控制剂防止氧化,然后在真空度为4.0×10-2~4.0×10-3Pa的快速升温管式电炉中以一定的工艺进行烧结,随炉冷却后得到TiAl金属间化合物。本发明工艺过程简单,原料较便宜的氢化钛粉,温度较低的情况下扩散与烧结后,经过简单研磨即得到纯度非常高TiAl金属间化合物粉末,其粉末可以通过粉末冶金常用方法进行成形等后续加工。

    一种纳米三氧化钨粉末的制备方法

    公开(公告)号:CN103708560A

    公开(公告)日:2014-04-09

    申请号:CN201310742106.4

    申请日:2013-12-30

    Abstract: 本发明涉及一种纳米三氧化钨粉末的制备方法,属于粉末冶金技术领域。所述方法包括如下步骤:将饱和钨酸铵溶液加热至65-70℃,然后按次序分别加入氯化铵、酒石酸、乙二胺四丙酸和二乙醇胺,加入过程保持搅拌至完全溶解并持续搅拌1-2h;随后在保持搅拌的情况下加入硝酸形成钨酸凝胶。然后将凝胶置于加热炉中在140-150℃干燥,然后升温至340-380℃煅烧,最后球磨粉碎得到平均粒度23-28nm的三氧化钨粉末。本发明的方法反应过程平缓稳定,易于控制,制备的纳米三氧化钨颗粒细小均匀,粉末纯度高。此外,由于流程简单、易于控制,使工业化生产投资少,生产工艺简单、方便,产品成本低,便于实现工业化批量生产。

    一种纳米碳化钨粉末的制备方法

    公开(公告)号:CN103658677A

    公开(公告)日:2014-03-26

    申请号:CN201310742015.0

    申请日:2013-12-30

    Abstract: 本发明涉及一种纳米碳化钨粉的制备方法,包括如下步骤:将硝酸铬和偏钒酸铵用去离子水溶解,加入仲钨酸铵(APT)球磨成浆,再加入水溶性酚醛树脂(PF)继续球磨,然后喷雾干燥得到复合粉末;将前驱体粉末在低温球磨中用液氮作为球磨介质球磨,室温干燥后置于碳管炉中用氢气保护碳化,得到纳米碳化钨粉。本发明的方法通过在工艺开始端加入铬和钒元素以及加入PF,通过元素的内部抑制作用以及PF的外部包覆隔离作用,并通过液氮冷冻球磨,使生产过程容易将WC粉末颗粒尺寸稳定地保持在纳米尺度。此外,由于WC粉末制备流程简单、易于控制,使工业化生产投资少,生产工艺简单、方便,产品成本低,便于实现工业化批量生产。

    一种提高铁粉成形性的方法

    公开(公告)号:CN102814495A

    公开(公告)日:2012-12-12

    申请号:CN201210331864.2

    申请日:2012-09-10

    Abstract: 一种提高铁粉成形性的方法,属于粉末冶金成形技术领域。利用硫化物的优异润滑性能提高压坯密度。将铁粉和硫化亚铁粉末混合,在球磨机中混料,混匀后在氢气炉中退火,使硫化亚铁均匀分布在铁粉表面,在压制过程中,硫化亚铁起到润滑剂的作用,改善了粉末颗粒间的摩擦状况,提高成形性,能够获得密度达7.2g/cm3~7.6g/cm3的坯体。本发明的优点在于:铁粉的成形性能好,能在较低的压制压力下获得密度更高的坯体,减小了磨具的损耗,同时硫对铁基零件的性能没有影响,并且工艺简单,适于工业化生产。

    一种利用磁流体制备吸波材料的方法

    公开(公告)号:CN103753881B

    公开(公告)日:2015-10-28

    申请号:CN201410019456.2

    申请日:2014-01-16

    Abstract: 一种利用磁流体制备吸波材料的方法,属于吸波材料领域。所述的吸波材料是由复合材料涂层和半导体涂层构成,首先用化学共沉淀法制备Fe3O4磁性纳米颗粒,再加入适量的表面活性剂超声分散在基载液中,制备出高稳定的磁流体。然后将环氧树脂、羰基镍粉和磁流体混合均匀,在外加磁场的作用下涂在铝合金薄板上,形成复合材料涂层。然后再将环氧树脂和碳化硅粉末均匀混合后涂在复合材料涂层上,形成半导体涂层。本发明方法是在外加稳定磁场的作用下,磁流体形成磁锥后在基体表面固化,使吸收长度大大增加,吸收频带展宽。同时,本发明方法制备的吸波材料具有质量轻、厚度薄等优点,便于实现工业化批量生产。

    一种混合料浆3D打印装置及其打印成形方法

    公开(公告)号:CN104841935A

    公开(公告)日:2015-08-19

    申请号:CN201510257680.X

    申请日:2015-05-19

    Abstract: 一种混合料浆3D打印装置,所述混合浆料3D打印装置包括:控制系统、物料供给系统、混合系统以及三轴运动系统,所述控制系统分别与所述物料供给系统、混合系统和三轴运动系统连接并控制其动作,所述物料供给系统、混合系统、三轴运动系统顺次连接,本发明装置适于将金属粉末、陶瓷粉末以及复合材料粉末,以液态有机物为载体,通过3D打印成形为复杂形状。这将大大拓展应用3D成形的材料领域。并且由于没有激光器等高成本的装置,因此本发明装置成本低,适于大范围推广使用。

    一种用氢化钛粉制备TiAl金属间化合物粉末的方法

    公开(公告)号:CN102825259A

    公开(公告)日:2012-12-19

    申请号:CN201210354102.4

    申请日:2012-09-21

    Abstract: 本发明属于粉末冶金技术领域,涉及一种用氢化钛粉制备TiAl金属间化合物粉末的方法。其制备步骤如下:按照Ti、Al原子比为1:1称量氢化钛粉和铝粉,经高能球磨机球磨混合均匀,其过程添加甲苯为控制剂防止氧化,然后在真空度为4.0×10-2~4.0×10-3Pa的快速升温管式电炉中以一定的工艺进行烧结,随炉冷却后得到TiAl金属间化合物。本发明工艺过程简单,原料较便宜的氢化钛粉,温度较低的情况下扩散与烧结后,经过简单研磨即得到纯度非常高TiAl金属间化合物粉末,其粉末可以通过粉末冶金常用方法进行成形等后续加工。

    一种金属粉末凝胶注模成形方法

    公开(公告)号:CN102814498A

    公开(公告)日:2012-12-12

    申请号:CN201210331816.3

    申请日:2012-09-10

    Abstract: 本发明提供了一种金属粉末凝胶注模成形方法,用于金属零部件的凝胶注模成形,属于粉末冶金生产工艺中金属零部件制备技术领域。本发明是在一定温度条件下配制硬脂酸和氢氧化钠的无水乙醇溶液,加入适量金属粉末制成具有一定流动性、稳定的悬浮浆料,将上述浆料混合并搅拌均匀后注入模具,硬脂酸与氢氧化钠反应形成硬脂酸钠,冷却即形成凝胶,从而使粉末固化形成坯体,与以丙烯酰胺、甲基丙烯酸羟乙酯为单体的常用凝胶体系相比,无单体聚合过程,因此有机物分子链较短,易于在排胶过程中排出,碳残留少,特别适合于钛、钕铁硼等活泼金属及合金的凝胶注模成形。此外,该体系无毒、廉价,工艺简单,适于工业化生产。

    一种利用微硅粉湿法制备水玻璃的方法

    公开(公告)号:CN102424394A

    公开(公告)日:2012-04-25

    申请号:CN201110268556.5

    申请日:2011-09-11

    Abstract: 一种利用微硅粉湿法制备水玻璃的方法,属于水玻璃生产技术领域。工艺步骤包括:分析微硅粉中SiO2含量,将微硅粉和液碱以SiO2∶NaOH摩尔比0.9~1.8∶1混合,搅拌状态下将该混合液送至液相反应釜中,反应釜内通入蒸汽加热,在温度70~220℃条件下保压反应0.5~6小时制得水玻璃混合液,将水玻璃混合液排出反应釜,在料液缓冲罐中调节温度至50~95℃,经板框加压过滤,所得滤液即为模数为1.80~3.20的水玻璃。优点在于,以硅铁合金工业粉尘为原料,利用微硅粉中非晶态SiO2与碱液反应活性高的特点制备水玻璃,转化效率高、工艺简单,解决了硅铁合金工业中粉尘的污染问题,具有较好的经济效益和社会效益。

    一种超耐磨硬质合金的制备方法

    公开(公告)号:CN106222464A

    公开(公告)日:2016-12-14

    申请号:CN201610587344.6

    申请日:2016-07-22

    CPC classification number: C22C1/051 C22C29/08

    Abstract: 一种超耐磨无粘结剂硬质合金的制备方法,属于粉末冶金技术领域。制备步骤如下:(1)将≤100nm的纳米WC粉与2-4μm的微米WC粉球磨混合,其中纳米WC粉在全部WC粉中占8-12wt%,纳米WC粉为纯的WC粉,微米WC粉是含有晶粒长大抑制剂0.5wt%Cr3C2和0.5wt%VC的WC粉;(2)将上述球磨混合粉装入石墨模具中热压烧结,烧结温度1500-1600℃,烧结压力30-40MPa,烧结时间20-30min。与传统制备工艺相比,由于采用纳米WC粉,其具有高的烧结活性,在较低温度下通过再结晶长大方式将微米WC颗粒烧结在一起。微米WC粉中添加了晶粒长大抑制剂,能够控制整个合金的晶粒尺寸,从而提高合金的综合力学性能,最终实现其耐磨性大幅度提高。

Patent Agency Ranking