-
公开(公告)号:CN118468517A
公开(公告)日:2024-08-09
申请号:CN202410416242.2
申请日:2024-04-08
Applicant: 北京理工大学 , 西北工业集团有限公司
IPC: G06F30/20 , G06F30/15 , G06F17/11 , G06F111/04
Abstract: 本发明公开了一种基于二阶滑模的飞行器制导方法,包括:设置飞行器动力学方程,建立飞行器制导系统;建立滑模面,采用滑模控制获得制导系统制导律;采用获得的制导律进行飞行器控制;其中,通过设置独特的滑模面以及滑模算法,有效消除抖振,实现不同角度约束下对目标的精确打击,通过设置一种非齐次干扰观测器,能够在没有先验信息的情况下,对目标进行估计和前馈补偿,可精确获取目标机动,提高了目标打击精度。
-
公开(公告)号:CN118151673A
公开(公告)日:2024-06-07
申请号:CN202410256307.1
申请日:2024-03-06
Applicant: 北京理工大学 , 中国北方工业有限公司
IPC: G05D1/49
Abstract: 本发明公开了一种基于全驱理论的旋转滑翔制导飞行器姿态驾驶仪设计方法,包括以下步骤:建立双通道耦合旋转滑翔制导飞行器的姿态模型;设置第一扰动观测器,对角度跟踪误差进行估计;基于第一扰动观测器估计,在角度控制回路中根据参考角度命令获得虚拟角速率指令;设置第二扰动观测器,对虚拟控制律跟踪误差进行估计;基于第二扰动观测器估计,在角速率控制回路中,根据虚拟角速率指令获得鸭舵指令,采用鸭舵指令对旋转滑翔制导飞行器进行姿态控制。本发明公开的基于全驱理论的旋转滑翔制导飞行器姿态驾驶仪设计方法,可以在复杂条件下使飞行器保持理想姿态,稳定飞行。
-
公开(公告)号:CN117826858A
公开(公告)日:2024-04-05
申请号:CN202410005908.5
申请日:2024-01-02
Applicant: 北京理工大学
IPC: G05D1/495 , G05D1/46 , G05D101/10 , G05D109/20
Abstract: 本发明公开了一种应用于无人飞行器的容错控制方法,实现了在有外界环境干扰和自身电机部分故障的情况下对飞行器期望姿态指令的快速准确跟踪;该方法中,基于非奇异快速终端滑模面来实时获得并输出动力系统需要输出的力矩,再基于该动力系统需要输出的力矩控制无人飞行器飞行,使得无人飞行器跟踪所述期望的姿态指令。
-
公开(公告)号:CN116700306B
公开(公告)日:2024-02-27
申请号:CN202310646328.X
申请日:2023-06-02
Applicant: 北京理工大学 , 中国兵器科学研究院 , 西北工业集团有限公司
IPC: G05D1/49 , G05D1/46 , G05D1/495 , G05D109/12 , G05D101/10 , G05D109/20
Abstract: 本发明公开了一种用于捷联导引飞行器的一体化制导控制方法,包括以下步骤:S1、设置控制系统模型,通过控制系统模型描述飞行器视线角、视线角速度、飞行器姿态、速度、飞行器控制量之间的关系;S2、根据控制系统模型,获取飞行器当前时刻的飞行器视线角、视线角速度、飞行器姿态、速度以及上一时刻飞行器控制量,获得当前控制信号,飞行器按照控制信号控制飞行器进行偏转。本发明公开的用于捷联导引飞行器的(56)对比文件张登辉.助推滑翔飞行器多约束制导控制一体化设计方法.中国博士学位论文全文数据库工程科技Ⅱ辑.2022,第72-82页.刘佳琪等.考虑驾驶仪动态性能的指令滤波反演制导律.航空学报.2020,第41卷(第12期),第3241231-32412310页.安炳合;王永骥;刘磊;侯治威;王博.基于自抗扰终端滑模的高速滑翔飞行器姿态控制.弹箭与制导学报.2019,第39卷(第06期),第164-170页.卜祥伟;吴晓燕;白瑞阳;马震.基于滑模微分器的吸气式高超声速飞行器鲁棒反演控制.固体火箭技术.2015,第38卷(第01期),第12-17页.
-
公开(公告)号:CN116203988A
公开(公告)日:2023-06-02
申请号:CN202310256332.5
申请日:2023-03-16
Applicant: 北京理工大学 , 西北工业集团有限公司
IPC: G05D1/10
Abstract: 本发明公开了一种基于融合微分方法的高动态飞行器制导控制方法,该方法为提升系统响应速度和连续精度,设计了包含非线性项和线性项的融合微分算法,以保证视线角速度估计过程中初始响应阶段的快速响应和后续跟踪阶段的平稳跟踪,从而及时准确地获得制导控制所需的视线角速度,再进一步基于重力补偿比例导引方式为高动态飞行器设计需用过载,需用过载按不同飞行器的传递比导出控制指令,传输给伺服机构,由伺服机构控制舵机对飞行器进行控制飞行,实现了精度更高的制导控制。
-
公开(公告)号:CN118331298A
公开(公告)日:2024-07-12
申请号:CN202410343835.0
申请日:2024-03-25
Applicant: 北京理工大学 , 中国北方工业有限公司
IPC: G05D1/46 , G05D109/28
Abstract: 本发明公开了一种应用于增程制导飞行器的弹道跟踪方法,包括以下步骤:在方案弹道上设置运动的虚拟点,将其作为虚拟目标;建立飞行器与虚拟目标点的相对运动方程;以飞行器视线角误差作为跟踪误差,通过滑模控制获得弹道跟踪制导律。本发明公开的基于虚拟点追踪的弹道跟踪制导方法,使得飞行器在存在初始偏差及受到各种随机因素的干扰的情况下,仍然能够按照方案弹道飞行。
-
公开(公告)号:CN118012124A
公开(公告)日:2024-05-10
申请号:CN202410121184.0
申请日:2024-01-29
Applicant: 北京理工大学 , 西北工业集团有限公司
IPC: G05D1/495 , G05D1/46 , G05D101/10 , G05D109/20
Abstract: 本发明公开了一种新型空基制导飞行器落角约束制导方法,包括以下步骤:建立制导模型;建立固定时间超螺旋扩张状态观测器,对目标加速度进行估计;基于观测器的估计结果,采用反步法获得加速度指令;飞行器根据加速度指令控制飞行姿态。本发明公开的新型空基制导飞行器落角约束制导方法,能够对目标加速度进行准确估计和补偿,相比于传统的高增益扩张状态观测器,系统动态稳定性更强。
-
公开(公告)号:CN116880526A
公开(公告)日:2023-10-13
申请号:CN202310876141.9
申请日:2023-07-17
Applicant: 北京理工大学
Abstract: 本发明公开了一种卫星拒止条件下复合制导飞行器的制导方法,该方法中,飞行器在中制导段,基于卫星信号和姿态敏感系统获得飞行器的期望加速度,据此控制飞行器飞向目标,在此过程中,若遭遇卫星拒止,则基于上一时刻应用的卫星信号获得飞行器的期望加速度,直至重新获得实时的卫星信号,在飞行器发射预定时间后,开启激光导引头;当激光导引头捕获目标后,通过新型视线角约束制导律实时获得飞行器的期望加速度,基于飞行器的期望加速度生成舵指令,控制舵机打舵工作,控制飞行器飞向目标,并以期望视线角碰撞目标,通过该新型视线角约束制导律补偿修正由于卫星拒止导致的偏差,最终使得飞行器命中目标。
-
公开(公告)号:CN115993775A
公开(公告)日:2023-04-21
申请号:CN202210453598.4
申请日:2022-04-27
Applicant: 北京理工大学
IPC: G05B13/04
Abstract: 本发明公开了一种用于仿生假腿精确跟踪控制方法,通过二连杆结构仿生假腿,包括相铰接的大腿杆和小腿杆,在小腿杆上,与大腿杆连接端,设置有小腿驱动电机;在大腿杆上,远离小腿杆连接端,设置有大腿驱动电机;通过在大腿杆和小腿杆上分别设置传感器以测量大腿杆、小腿杆的角位置、角速率和角加速度;根据期望角位置与测量角位置获得跟踪误差,通过滑模控制法使得跟踪误差快速收敛,实现仿生假腿对期望轨迹的精确跟踪。本发明公开的用于仿生假腿精确跟踪控制方法,不仅实现快速收敛,还规避了非奇异的问题,实现了高精度、高连续性控制,适用于冰雪运动等高速度运动下的控制。
-
公开(公告)号:CN118999517A
公开(公告)日:2024-11-22
申请号:CN202310555971.1
申请日:2023-05-17
Applicant: 北京理工大学
Abstract: 本发明公开了一种用于高过载飞行器的仿生缓冲一体化导航制导导引舱;该导引舱包含仿生缓冲结构和一体化导航制导控制系统两个部分;通过仿生缓冲结构提高飞行器的抗高过载能力,进而提高其飞行距离;将导航制导控制系统一体化以提高其系统间的指令传递速度;同时,针对飞行器增程,制导系统采用增程制导算法,以在远距离飞行的情况下获得良好的精确制导效果。
-
-
-
-
-
-
-
-
-