-
公开(公告)号:CN115100449A
公开(公告)日:2022-09-23
申请号:CN202210921778.0
申请日:2022-08-02
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种遥感数据多目标关联匹配与轨迹生成方法及设备,利用SIFT尺度不变的特性对多模态序列遥感图像进行空间配准,再利用基于拓扑特征相似度匹配的多目标关联匹配方法对图像中的目标信息进行关联匹配,该发明可以将不同传感器在空间及时间上的冗余或互补信息进行组合,获得比单一传感器单时相数据更完善更准确的目标轨迹信息,具有高效率、高精度的特点。
-
公开(公告)号:CN115019184A
公开(公告)日:2022-09-06
申请号:CN202210900866.2
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种基于遥感影像的石漠化程度自动分级方法及装置,该方法包括:获取石漠化区域的原始遥感影像和高程数据,并进行预处理;利用处理后的遥感影像反演所述石漠化区域的基岩裸露率和植被覆盖度,利用处理后的高程数据计算坡度数据;将所述基岩裸露率、所述植被覆盖度、所述高程数据和所述原始遥感影像进行融合,得到样本数据,对所述样本数据的石漠化程度进行等级区分和标注,获得标签文件;构建CKRD‑DNN模型,并利用所述样本数据和所述标签文件进行训练;利用训练好的CKRD‑DNN模型对待分级的石漠化区域遥感影像进行识别和判定,得到分级结果。本发明可以实现大范围石漠化区域不同发育程度石漠化的高效自动分级和判定。
-
公开(公告)号:CN115019180A
公开(公告)日:2022-09-06
申请号:CN202210900308.6
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/04 , G06N3/08 , G06V10/764 , G06V10/766 , G06V10/77 , G06V10/82 , G06V10/80
Abstract: 本发明涉及一种SAR图像舰船目标检测方法、电子设备及存储介质,四种单极化图像目标检测网络指导学生目标检测网络学习“极化特征知识”,全极化的目标检测网络指导学生目标检测网络学习输出端“响应知识”,有效地减少了不同极化样本分布不均衡情况导致的目标检测模型训练时存在网络过拟合问题,使得学生目标检测网络对于不同极化方式的SAR数据都有较好的检测能力,保证了学生目标检测网络的稳定性与可靠性,在降低目标检测网络复杂度的同时,得到适用于不同极化SAR图像的舰船目标检测器。
-
公开(公告)号:CN115018892A
公开(公告)日:2022-09-06
申请号:CN202210900865.8
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种遥感影像的自动配准方法及装置,该方法包括:对不完全重叠的待配准遥感影像对进行预处理,得到对应的多个影像块对,并对所述多个影像块对进行仿射变换;构建影像配准深度神经网络模型并进行训练;将仿射变换后的多个影像块对输入训练后的影像配准深度神经网络模型,输出配准后的匹配特征点对;重新投影所述配准后的匹配特征点对至对应的原始待配准遥感影像对中,获得所述待配准遥感影像对的最终匹配结果。本发明可以实现遥感影像精确、高效的自动配准。
-
公开(公告)号:CN116486169B
公开(公告)日:2023-12-19
申请号:CN202310477115.9
申请日:2023-04-27
Applicant: 北京卫星信息工程研究所
IPC: G06V10/764 , G06V10/26 , G06V10/762 , G06F16/36 , G06V10/82 , G06N3/0464 , G06N3/08 , G06V20/50
Abstract: 本发明涉及遥感图像目标动向判别方法,包括:S100,对遥感图像进行全景分割标注和目标行为动向标注,确定目标动向知识图谱;S200,基于遥感图像建立全景分割模型,以ResNet作为特征提取主干网络,并引入交叉注意力模块提取长距上下文信息;S300,根据全景分割网络中的实例分割分支对遥感图像进行实例级分割,根据全景分割网络中的语义分割分支对遥感图像进行语义级分割;S400,引入基于贝叶斯决策的分支融合模块,对实例分割分支和语义分割分支的结果进行决策融合,生成全景分割图像;S500,将全景分割图像进行像素聚类生成场景信息知识图谱;S600,根据图注意力网络,对场景信息知识图谱中的关注目标进行动向判别。本发明可推理遥感图像中目标的行为动向信息。
-
公开(公告)号:CN116450632B
公开(公告)日:2023-12-19
申请号:CN202310421521.3
申请日:2023-04-18
Applicant: 北京卫星信息工程研究所
IPC: G06F16/215 , G06F16/29
Abstract: 本发明涉及一种地理样本数据质量评估方法、设备及存储介质,地理样本数据质量评估方法包括:分析多应用层级的地理人工智能样本数据的质量特征,建立多应用层级的样本数据质量指标体系;确定进行质量评估的地理人工智能样本数据集的特征与质量规范;确定进行质量评估的地理人工智能样本数据集的质量评估规范;执行地理人工智能样本数据质量评估,获取质量评估结果;基于质量评估结果,生成地理人工智能样本数据质量评估报告。本发明,能够满足像素级、目标级、场景级多应用层级的地理人工智能样本数据的质量评估需求,为地理人工智能样本数据的质量评估提供系统性参考,从而帮助提高样本数据的可靠性。
-
公开(公告)号:CN116416136B
公开(公告)日:2023-12-19
申请号:CN202310408459.4
申请日:2023-04-17
Applicant: 北京卫星信息工程研究所
IPC: G06T3/40 , G06T5/50 , G06T7/00 , G06V20/13 , G06V10/26 , G06V10/82 , G06V10/42 , G06V10/44 , G06V10/80 , G06N3/0464 , G06N3/045
Abstract: 本发明涉及一种可见光遥感图像舰船目标检测的数据扩增方法、设备及存储介质,获取原始可见光遥感图像数据集及其标注文件;确定需要进行扩增的舰船类别;引入语义评估模块,得到能够扩增的合理区域;依据原始可见光遥感图像数据集的标注文件,提取原始各类舰船切片样本;对原始各类舰船切片样本进行超分辨率重建,构建舰船扩增样例库;将原始可见光遥感图像和舰船扩增样例库进行图像合成处理,得到扩增后的图像;对扩增后的图像进行质量评估,筛选替换原始图像。本发明,实现了舰船少数类的自动扩增,解决因训练集类间不平衡导致训练出来模型偏向于多数类,而对少数类识别精度下降(56)对比文件Nan Mo et al.Improved Faster RCNNBased on Feature Amplification andOversampling Data Augmentation forOriented Vehicle Detection in AerialImages.remote sensing.2020,第1-7页.Yuzhu Ji et al.LGCNet: A local-to-global context-aware feature augmentationnetwork for salient objectdetection.ELSEVIER: InformationSciences.2022,第439-440页.
-
公开(公告)号:CN116403122B
公开(公告)日:2023-12-19
申请号:CN202310403526.3
申请日:2023-04-14
Applicant: 北京卫星信息工程研究所
IPC: G06V20/13 , G06V10/764 , G06V10/25
Abstract: 本发明涉及一种无锚框定向目标检测方法,包括:S100,获取至少一幅包含待检测目标的卫星遥感图像;S200,以Resnet101为主干网络,提取所述卫星遥感图像的降采样4、8、16、32倍的特征C2、C3、C4、C5;S300,根据C2、C3、C4、C5构建FPN网络;S400,将所述FPN网络中的上采样和横向连接,替换为特征选择与对齐,对C2、C3、C4、C5进行融合处理,得到多尺度特征P3、P4、P5、P6、P7;S500,采用旋转边界框进行目标检测;S600,对目标检测算法进行优化,驱动目标检测网络在训练过程中学习目标的遥感方向信息。本发明可提高遥感目标检测对空间尺度大小与方向任意的目标的检测能力。
-
公开(公告)号:CN116403122A
公开(公告)日:2023-07-07
申请号:CN202310403526.3
申请日:2023-04-14
Applicant: 北京卫星信息工程研究所
IPC: G06V20/13 , G06V10/764 , G06V10/25
Abstract: 本发明涉及一种无锚框定向目标检测方法,包括:S100,获取至少一幅包含待检测目标的卫星遥感图像;S200,以Resnet101为主干网络,提取所述卫星遥感图像的降采样4、8、16、32倍的特征C2、C3、C4、C5;S300,根据C2、C3、C4、C5构建FPN网络;S400,将所述FPN网络中的上采样和横向连接,替换为特征选择与对齐,对C2、C3、C4、C5进行融合处理,得到多尺度特征P3、P4、P5、P6、P7;S500,采用旋转边界框进行目标检测;S600,对目标检测算法进行优化,驱动目标检测网络在训练过程中学习目标的遥感方向信息。本发明可提高遥感目标检测对空间尺度大小与方向任意的目标的检测能力。
-
公开(公告)号:CN115100532B
公开(公告)日:2023-04-07
申请号:CN202210921934.3
申请日:2022-08-02
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/0464 , G06N3/0985 , G06N5/02 , G06N5/04 , G06V10/764 , G06V10/766 , G06V10/77 , G06V10/82
Abstract: 本发明涉及一种小样本遥感图像目标检测方法和系统,所述小样本遥感图像目标检测方法包括:利用基础训练网络训练基类数据,其中,所述基础训练网络包括针对遥感图像建立的知识图谱;利用微调训练网络训练小样本数据,所述小样本数据包括经所述基础训练网络训练后的基类数据和新类数据。本发明的基础训练网络上训练完成的基类数据与新类数据一起构成微调训练网络的样本数据集,使得基础训练阶段训练好的网络可以通过微调训练很好地泛化到当前遥感图像小样本目标检测任务中,且知识图谱的知识输入可以为网络提供先验知识,可以在样本数量少、样本获取难度大的情况下,高效地训练出具备良好性能的目标检测网络。
-
-
-
-
-
-
-
-
-