-
公开(公告)号:CN116524368A
公开(公告)日:2023-08-01
申请号:CN202310403716.5
申请日:2023-04-14
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及遥感图像目标检测方法,包括获取至少一幅包含待测目标的卫星遥感图像,利用卷积神经网络提取卫星遥感图像的多尺度特征,根据嵌入掩膜引导特征金字塔网络学习前景目标区域的特征,并生成用于提取原始图像中疑似目标区域的旋转候选框,利用旋转RoIAlign对齐操作对疑似目标区域进行特征提取,将提取到的特征送入由Smooth‑L1回归损失和角边距分类损失组成的有向检测头进行分类识别与回归定位。本发明提升了目标检测方法对港口等复杂背景的抗干扰能力,减少了云雾、形似干扰物造成的虚警,提高了目标检测的识别精度,可应用于高分辨率遥感图像中的船只、飞机等目标识别。
-
公开(公告)号:CN115294439B
公开(公告)日:2023-04-07
申请号:CN202210923739.4
申请日:2022-08-02
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种空中弱小运动目标检测方法、系统、设备及存储介质,首先读取至少三个不同波段间存在成像视差的卫星遥感图像,获取的多光谱数据源中每个波段对目标成像时存在一定的时间偏差,时间偏差会造成运动目标在多光谱图像中的位移视差,并利用该位移视差确定空中弱小运动目标,最后对检测到的空中弱小运动目标图像进行坐标和投影转换,输出检测结果。本发明实现了宽幅成像模式下不同空间分辨率多光谱图像中空中弱小运动目标的检测,避免了传统方法中空间分辨率对检测精度的影响及实际应用中的局限性,弥补了现有技术手段和方法的不足,提高了空中弱小运动目标检测识别精度。
-
公开(公告)号:CN115115939B
公开(公告)日:2023-04-07
申请号:CN202210899281.3
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种基于特征注意力机制的遥感图像目标细粒度识别方法,包括:对原始遥感图像的目标数据和目标特征数据进行标注;对所述原始遥感图像、所述标注的目标数据和目标特征数据进行处理和增强,获得三组数据集;构建目标‑特征注意力模型;将处理和增强后的三组数据集输入所述目标‑特征注意力模型进行训练,利用训练好的目标‑特征注意力模型完成所述原始遥感图像中的目标细粒度的型号级识别。本发明可以实现遥感影像飞机等目标的高精度精细化型号级识别。
-
公开(公告)号:CN115272857A
公开(公告)日:2022-11-01
申请号:CN202210900863.9
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种基于注意力机制的多源遥感图像目标识别方法,包括:获取多源遥感图像及其对应的目标类别标签,并进行预处理;提取预处理后的多源遥感图像中的目标特征,对所述目标特征进行过滤,得到多源目标的关键特征;构建特征融合编码器并对所述关键特征进行融合,获得隐层特征数据;构建特征解码器并重构所述隐层特征数据;利用重构的隐层特征数据和所述关键特征对所述特征融合编码器和所述特征解码器进行优化;利用分类网络对所述隐层特征数据进行分类识别。本发明不仅实现多源遥感图像中的目标识别,还可提高识别的精度。
-
公开(公告)号:CN115019181A
公开(公告)日:2022-09-06
申请号:CN202210900309.0
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/04 , G06N3/08 , G06V10/52 , G06V10/764 , G06V10/766 , G06V10/77 , G06V10/82
Abstract: 本发明涉及一种遥感图像旋转目标检测方法、电子设备及存储介质,在训练中,对给定的目标位置标签,先利用椭圆分布采样方式,获取丰富的样本点;利用自适应前景采样策略,从高层特征图到低层特征图依次获取高质量的前景样本点,与网络预测的前景目标一起输入到损失函数,从而学到更准确的目标特征表示方法,基于标签中目标真值坐标,通过调整椭圆长边与短边的长度,自适应地在特征图上进行采样,避免了小尺寸目标在特征金字塔中难以获取采样点和大尺寸获取过多冗余采样点的问题,通过自适应的方法提升了采样精度和泛化性,对高分辨率遥感图像旋转框目标检测具有重要意义。
-
公开(公告)号:CN119741467A
公开(公告)日:2025-04-01
申请号:CN202411637460.5
申请日:2024-11-15
Applicant: 北京卫星信息工程研究所
IPC: G06V10/25 , G01S13/90 , G06V20/13 , G06V10/44 , G06V10/46 , G06V10/80 , G06V10/762 , G06V10/764 , G06V10/766 , G06V10/84 , G06N3/0464 , G06N3/045
Abstract: 本发明涉及一种基于光学和SAR遥感数据的飞机目标检测识别方法与装置,所述方法包括以下步骤:S1、选用标注完整的SAR图像形成数据集A用来训练第一目标检测模型;S2、选用与数据集A处于同区域同时刻的光学图像形成数据集B用来训练第二目标检测模型;S3、获取同区域同时刻的SAR、光学图像,并分别输入第一、第二目标检测模型检测,并根据检测目标的姿态角分别对第一、第二目标检测模型的检测结果进行旋转变换,获得第一、第二检测结果;S4、通过基于注意力的决策融合检测算法对上述第一、第二检测结果进行决策融合。本发明采用深度学习图像处理方法,通过光学、SAR多传感器数据融合检测技术,有效提高了目标识别的准确性。
-
公开(公告)号:CN118735969A
公开(公告)日:2024-10-01
申请号:CN202410739942.5
申请日:2024-06-07
Applicant: 北京卫星信息工程研究所
IPC: G06T7/33 , G06V10/764 , G06V10/77 , G06V10/80 , G06V10/20 , G06V10/40 , G06N3/0475 , G06N3/0464 , G06N3/044 , G06N3/08
Abstract: 本发明涉及一种基于表示学习的高光谱遥感影像配准方法,包括:获取高光谱遥感卫星拍摄一组高光谱图像,并对其进行预处理;构建对抗生成网络,并对不同波段范围进行多波段特征学习和特征映射;构建多波段结构化语义的CNN‑RNN混合神经网络深度表达模型,提取每个波段高光谱图像的结构语义信息;建立跨波段的特征对齐和特征关联的网络模型,进行不同波段间影像的匹配。本发明,能够提高高光谱遥感影像配准的精度,更能大大节省配准的效率,节省人力物力。
-
公开(公告)号:CN116450613B
公开(公告)日:2023-12-19
申请号:CN202310418313.8
申请日:2023-04-18
Applicant: 北京卫星信息工程研究所
IPC: G06F16/21 , G06F16/25 , G06F16/29 , G06F16/955
Abstract: 本发明涉及一种面向资源的地理样本数据服务方法、设备及存储介质,建立地理人工智能样本数据服务元数据描述的概念模型和逻辑模型;建立地理人工智能样本数据服务资源体系;构建面向资源的地理人工智能样本数据服务接口及接口与地理人工智能样本数据服务资源的映射关系;定义表述性状态转换风格的地理人工智能样本数据服务资源的统一资源描述标识符,并与样本数据服务接口绑定;发布地理人工智能样本数据服务的网络访问接口。本发明,增强了空间数据基础设施的智能化服务能力,从而支持建设人工智能就绪的空间数据基础设施,满足了多源异构的地理人工智能样本数据的共享服务
-
公开(公告)号:CN116486265A
公开(公告)日:2023-07-25
申请号:CN202310468626.4
申请日:2023-04-26
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06V10/26 , G06V10/764 , G06V10/82 , G06V10/44 , G06V10/766 , G06V10/422 , G06N3/0464 , G06N3/042 , G06N3/08
Abstract: 本发明涉及一种基于目标分割与图分类的飞机细粒度识别方法,包括:构建并训练基于Mask R‑CNN的目标定位与分割模型,对遥感图像中的飞机目标进行检测与分割;对分割出的飞机目标掩膜通过轮廓提取和多边形拟合提取轮廓多边形,将轮廓多边形的线段作为节点,将线段的几何特征和线段对应部件的卷积特征作为节点属性,并根据线段间的空间关系构建图结构数据;构建融合几何特征和卷积特征的图卷积神经网络模型;利用所述图结构数据训练所述图卷积神经网络模型,对描述飞机形状特征和部件特征的图结构进行整图分类,实现飞机目标的细粒度识别。通过实施本发明的上述方案,通过综合利用飞机目标的形状特征和部件特征提高飞机细粒度识别的精度。
-
公开(公告)号:CN116450613A
公开(公告)日:2023-07-18
申请号:CN202310418313.8
申请日:2023-04-18
Applicant: 北京卫星信息工程研究所
IPC: G06F16/21 , G06F16/25 , G06F16/29 , G06F16/955
Abstract: 本发明涉及一种面向资源的地理样本数据服务方法、设备及存储介质,建立地理人工智能样本数据服务元数据描述的概念模型和逻辑模型;建立地理人工智能样本数据服务资源体系;构建面向资源的地理人工智能样本数据服务接口及接口与地理人工智能样本数据服务资源的映射关系;定义表述性状态转换风格的地理人工智能样本数据服务资源的统一资源描述标识符,并与样本数据服务接口绑定;发布地理人工智能样本数据服务的网络访问接口。本发明,增强了空间数据基础设施的智能化服务能力,从而支持建设人工智能就绪的空间数据基础设施,满足了多源异构的地理人工智能样本数据的共享服务需求,为地理人工智能样本数据的共享和应用提供有力支撑。
-
-
-
-
-
-
-
-
-