-
公开(公告)号:CN105789716A
公开(公告)日:2016-07-20
申请号:CN201610121616.3
申请日:2016-03-03
Applicant: 北京交通大学
IPC: H01M10/42
CPC classification number: H01M10/4207
Abstract: 本发明涉及一种新能源车辆和电池储能用广义电池管理系统,提供一种本地电池管理系统与运行于远端大数据平台的离线状态评估系统相结合的广义电池管理系统,其中本地电池管理系统实时检测电池参数(电压、电流、温度和充放电容量),根据检测的电池参数对电池状态进行估计,判断是否出现异常状态,实现本地实时充放电管理,并把检测的电池参数上传到远端大数据平台;而离线状态评估系统运行于远端大数据平台,基于数据库中存储的电池历史电池参数和实时电池参数,评估电池的健康状态并进行风险预警,根据电池的健康状态重新设定充放电控制参数,动态更新管理策略,给出电池维护信息,并把结果传输给本地电池管理系统。
-
公开(公告)号:CN119902084A
公开(公告)日:2025-04-29
申请号:CN202510017919.X
申请日:2025-01-06
Applicant: 北京交通大学
IPC: G01R31/367 , G01R31/396 , G01R31/385
Abstract: 本发明公开了一种低压测试加高压仿真电池系统熔断保护有效性分析方法,包括:单体电池外短路响应特性测试;低压电池组外短路响应特性测试;电池外短路等效电路建模;等效电路模型参数辨识;高压系统外短路电流仿真;外短路熔断有效电流变换;熔断保护时间判断;电池系统外短路保护有效性分析。本发明通过将电池系统熔断保护拆分为低压单元和高压单元,并分别开展测试和仿真,解决了高压系统熔断保护验证试验因成本和风险难以实施的问题,且能提升电池系统的安全性和可靠性。
-
公开(公告)号:CN115166553B
公开(公告)日:2024-11-12
申请号:CN202210714553.8
申请日:2022-06-23
Applicant: 北京交通大学
IPC: G01R31/389 , H01M10/42
Abstract: 本发明涉及一种锂离子电池扩散极化过程无损分离方法,该方法利用电极和电池的热力学和扩散动力学间的匹配关系,根据辨识的全电池固相扩散系数,在基变换下分离电极的固相扩散过程。本发明主要包括如下步骤:首先,构建电极和全电池的热力学参数匹配关系,获取正负极的电压增量特性;然后,根据电极和全电池的电压增量来选取合适的SOC点进行交流阻抗测试;然后,利用交流阻抗测试和等效阻抗模型辨识电池固相扩散时间常数;最后,在基变换的理论下分离电极的固相扩散时间,结合电极的电压增量实现电极扩散内阻的无损分离。该方法步骤简单,易于在线实现,且可靠性高,适用于电动汽车动力电池内部电极材料微观机理的无损检测。
-
公开(公告)号:CN118688646A
公开(公告)日:2024-09-24
申请号:CN202410829796.5
申请日:2024-06-25
Applicant: 北京交通大学
IPC: G01R31/378 , G01R31/382 , G01R31/392 , G01R31/367
Abstract: 本发明提供一种锂离子电池原位析锂检测方法,包括:基于一体化测试工装进行不同倍率充电;对电池进行相同倍率放电,检测电池的电压和膨胀力变化曲线;对所述放电过程的膨胀力变化曲线进行微分处理,得到微分膨胀力‑电压曲线;根据所述微分膨胀力‑电压曲线,判断电池在不同倍率充电下的析锂情况。本发明可实现快速的析锂检测,同时能够得到电池在不同温度下的析锂边界电流大小,且膨胀力信号检测敏感度高于电压信号,从而为电池开发商开发出更具性价比、竞争力的电池产品提供有力支持。
-
公开(公告)号:CN114879071B
公开(公告)日:2024-07-02
申请号:CN202210536588.7
申请日:2022-05-17
Applicant: 北京交通大学
IPC: G01R31/392 , G01R31/367 , G01R31/3835
Abstract: 本发明涉及一种锂离子电池非线性衰退老化模式在线诊断方法。该方法仅采用电池充电过程中的电压和电流信息,通过获取电池平均电压和容量在老化过程中的演变轨迹准确评估电池非线性衰退的老化模式。该诊断方法不需要采用特定的充电电流,简单易行,可靠性高,可直接在电动汽车上使用,适用于电动汽车动力电池在线老化模式识别。
-
公开(公告)号:CN117293427A
公开(公告)日:2023-12-26
申请号:CN202310973469.2
申请日:2023-08-04
Applicant: 北京交通大学
IPC: H01M10/44 , G06F30/20 , H02J7/00 , G06F111/06
Abstract: 本发明公开了一种降低能耗的锂离子电池安全快速优化充电方法。通过建立精准电池模型或设计三电极电池获取电池负极电位;以电池负极不析锂时的最大充电电流作为充电电流边界;仿真采用不同数量的恒流充电阶梯数对电池进行充电至一定程度时的充电总时长,确定最佳充电阶梯数;利用模型仿真得到电池在不同倍率下的功耗密度或能耗,制定多阶段恒流SOC区间划分依据;以电池充电能耗作为目标,分阶段优化得到避免电池发生析锂副反应的优化充电电流序列,对电池进行充电。采用该充电方法对电池充电,不仅提高了充电速度,保证了电池充电安全,并且与相同倍率的恒流充电制式相比能耗有所降低,为锂离子电池安全快速和优化充电领域提供了重要的参考价值。
-
公开(公告)号:CN117110878A
公开(公告)日:2023-11-24
申请号:CN202310825952.6
申请日:2023-07-06
Applicant: 北京交通大学
IPC: G01R31/367 , G01R31/378 , G01R31/392 , G01R31/396 , G01R31/385 , G01R31/388
Abstract: 本发明涉及一种基于片段电压序列的锂离子电池SOH在线估计方法。该方法仅采用电池充电过程中的固定部分电压区间内的片段电压信息,通过获取电池充电电压在确定区间内的统计量特征来准确估计电池当前的健康状态。该估计方法不需要高精密的采集设备,对数据质量的要求较小,简单易行,准确性高,可对锂离子电池的健康状态进行快速估计。
-
公开(公告)号:CN113884900B
公开(公告)日:2022-08-23
申请号:CN202111066744.X
申请日:2021-09-13
Applicant: 北京交通大学
IPC: G01R31/371
Abstract: 本发明公开了一种三元锂离子电池容量突变点预测方法,从已有的电池加速老化数据中提取与新的电池具有相同加速老化模式的迁移样本,用于训练机器学习模型,最终预测新的电池的容量突变点。锂离子电池容量突变点预测方法包括加速老化模式判断,迁移样本选择以及容量突变点预测。具体为从三元锂离子电池放电容量‑电压曲线,容量增量曲线,电压差分曲线的早期变化曲线上提取表征锂离子电池的健康状态的17个老化特征参数,然后利用机器学习算法对锂离子电池的加速老化模式进行早期诊断,然后根据加速老化模式判断结果从已有的电池加速老化数据中进行样本选择,利用迁移样本训练机器学习模型,最终对新的电池进行容量突变点预测。
-
公开(公告)号:CN114518539A
公开(公告)日:2022-05-20
申请号:CN202210039778.8
申请日:2022-01-14
Applicant: 北京交通大学
IPC: G01R31/382
Abstract: 本发明涉及一种动力电池SOC异常分析方法,包括:对动力电池历史数据进行处理从而建立数据库,筛选出便于后续分析的充电数据集;通过计算充电数据任一时刻的平均充电电压作为电压基准值;计算得到该次电池充电过程的电压偏离值;对电压偏离值进行整合后引入时间参数,得到电压偏离值随时间变化的曲线,进行滤波得到电压偏离值‑时间曲线;根据得到的电压偏离值‑时间曲线,判断出SOC异常的单体电池及其变化趋势。本发明不需要复杂的线下检测,工作量小。同时具有很强的通用性,不仅仅局限于某一款动力电池,可将分析结果应用于电动汽车的检测维修,确保应用的安全。能够得到更加准确的SOC异常诊断结果,直观的分析出电池参数的变化趋势。
-
公开(公告)号:CN112433170B
公开(公告)日:2021-08-10
申请号:CN202011092297.0
申请日:2020-10-13
Applicant: 北京交通大学
IPC: G01R31/396 , G01R31/388
Abstract: 本发明属于电池参数辨识技术领域,涉及一种串联电池组单体参数差异辨识方法,方法基于动态时间扭曲算法,对串联电池组电池单体的充电数据进行分析处理,通过对比电池OCV曲线和电池单体的充电电压曲线,计算所有具有“一一对应关系”的数据点之间的索引值之差的平均值Td;并根据电池组的充电倍率和采样时间间隔设置比例系数Tr;接着计算Td与Tr的比值R,作为电池单体在充电过程中的起始SOC;最后根据各单体电池的充电起始SOC,计算出反映电池组SOC一致性的单体SOC差异情况。本发明方法实现了对串联电池组内各电池单体的充电初始SOC、电池组SOC一致性的估计,具有较高精度和效率。
-
-
-
-
-
-
-
-
-