-
公开(公告)号:CN114674257A
公开(公告)日:2022-06-28
申请号:CN202210329164.3
申请日:2022-03-31
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01B17/02
Abstract: 本发明公开了一种基于超声横波探测的高精度测厚方法及装置,属于超声横波测量领域,包括步骤:S1,在结构的未减薄厚度位置和发生厚度减薄变化的位置之间的过渡阶梯端点处正上方激发一次超声横波;S2,记录来自减薄厚度处第一、第二回波时间,来自未减薄厚度处第一、第二回波时间;S3,利用来自未减薄厚度表面与减薄后厚度表面的第一、第二回波之间的渡越声时的作差结果来表征减薄厚度信息;S4,根据超声横波的波速与温度的标定关系,获得不同温度下超声横波在结构中的传播速度,从而利用传播速度获得减薄厚度。本发明摒弃了系统误差,提高定点测厚精度,从而为结构的安全评估提供最准确的基准数据和评价依据,具有十分重要的意义。
-
公开(公告)号:CN111174895B
公开(公告)日:2025-05-09
申请号:CN202010107271.2
申请日:2020-02-21
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明涉及一种用于超声测量中波速与温度关联关系标定装置,包括:微控制器、电磁超声收发模块、加热模块、保温模块、温度测量模块以及显示模块;所述电磁超声收发模块、加热模块、保温模块和温度测量模块均作用于被测试件;所述微控制器分别与电磁超声收发模块、加热模块、温度测量模块连接,控制各个模块工作,并采集电磁超声收发模块和温度测量模块的数据从而计算超声波在被测试件中的波速与温度的关系;所述显示模块与微控制器连接,用于显示波速与温度的标定结果。该装置实现标定实验的一体化和自动化测量,能够简单快捷地得到波速和温度的关系,可根据需求标定材料的超声传播特性,扩展了超声测温、测厚等技术在实际使用中对材料的适应性。
-
公开(公告)号:CN119374754B
公开(公告)日:2025-03-28
申请号:CN202411959132.7
申请日:2024-12-30
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01K11/22
Abstract: 本发明公开了一种基于超声谐波频率测量高温结构内部温度的方法,属于无损探测领域,包括:测量某一温度场下的纵波和横波超声谐振频率,获得纵波和横波超声波传播速度,再依据预先标定的波速与温度关系分别获得纵波和横波测量得到的温度,最后根据纵波和横波的谐振频点数得到综合谐振测温结果。本发明可以在超声波传播时间数据不易采集或采集数据失真的情况下,实现对结构内部温度进行有效的测量,且具有较高的测量精度。
-
公开(公告)号:CN119063869A
公开(公告)日:2024-12-03
申请号:CN202411572269.7
申请日:2024-11-06
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明公开了一种金属基复合材料结构内部温度场的超声测量方法,属于超声无损探测领域,包括步骤:在金属基复合材料结构表面激发超声波,检测其回波信号的特征;如果回波信号具有第一回波和第二回波的特征,则首先采用等效均匀化的处理方法将非均质材料均质化,再利用超声测量渡越声时测量所述金属基复合材料的内部温度场;如果回波信号不具有第一回波和第二回波的特征,则结束。本发明克服了传统复合材料因材料组分结构多样带来的复杂问题,测量结果精度较好,适用于多种金属基复合材料的超声测温。
-
公开(公告)号:CN118980441A
公开(公告)日:2024-11-19
申请号:CN202411467329.9
申请日:2024-10-21
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01K11/24
Abstract: 本发明公开了一种固体三维空间稳态温度场激光超声探测系统及方法,涉及物体内部温度无损非接触测量领域;其中,系统包括:激光超声激发器、激光超声接收器、扫查装置、信号处理模块和数据处理模块;所述激光超声激发器用于在固体中激发超声波;所述激光超声接收器用于接收从固体底部返回的超声回波信号;所述信号处理模块用于采集超声波传播时间;所述激光超声激发器和激光超声接收器安装在扫查装置上;所述数据处理模块用于根据各个位置的超声波传播时间,计算得到三维空间温度场分布;并以此提出了一种超声探测方法。本发明,可实现对固体三维空间稳态温度场的无损、非接触、远距离测量,能够适应高温、高压、腐蚀等复杂环境。
-
公开(公告)号:CN117494400A
公开(公告)日:2024-02-02
申请号:CN202311358565.2
申请日:2023-10-18
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/20 , G06F17/11 , G06F119/08 , G06F113/08
Abstract: 本发明公开了强对流条件下低温平板干模态结霜相似因素获得方法,涉及结霜行为预测领域,包括:对低温平板干模态结霜进行模拟,构建霜层对应的能量守恒方程和质量守恒方程;基于无量纲温度、无量纲霜层厚度、无量纲结霜时间、无量纲湿度和无量纲霜层密度对质量守恒方程进行处理得到无量纲质量守恒方程;基于无量纲温度、无量纲霜层厚度、无量纲湿度和无量纲霜层热导率对能量守恒方程进行处理得无量纲能量守恒方程;对无量纲质量守恒方程和无量纲能量守恒方程进行分析获得强对流条件下低温平板干模态结霜相似因素结果,本方法能够获得强对流条件下低温平板干模态结霜相似因素。
-
公开(公告)号:CN115950916A
公开(公告)日:2023-04-11
申请号:CN202310241424.6
申请日:2023-03-14
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明具体涉及热测试技术,具体公开了一种物体表面热流密度检测方法、装置以及设备,该方法包括设定物体待测面上热流随时间变化的初步热流密度函数;采集物体待测面的初始温度和超声波传播时长;根据初始温度和初步热流密度函数,确定理论超声波传播时长;若是超声波传播时长和理论超声波传播时长之间的差异较小,则该初步热流密度函数即为物体待测面的热流密度函数;否则对初步热流密度函数进行调整,并重新按照上述方式确定该初步热流密度函数是否准确,直到获得准确的热流密度函数。本申请无需对物体结构进行破坏及其他任何处理,且超声波信号仅仅在物体内部传播,避免外部环境的干扰,降低热流密度的测量难度且保证热流密度函数的准确性。
-
公开(公告)号:CN112992294A
公开(公告)日:2021-06-18
申请号:CN202110416484.8
申请日:2021-04-19
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G16C60/00
Abstract: 本发明公开了多孔介质LBM计算网格生成方法,包括步骤:S1,获取多孔介质几何数模文件;S2,判断几何空间域的范围;S3,计算LBM物理求解域范围及各方向的网格节点数;S4,计算多孔介质几何数模文件的各固体骨架表面单元在LBM计算空间的区域范围;S5,判断固体骨架表面单元是否存在交点并标记;S6,进行流/固求解域与边界的判断;S7,根据交点排列的奇偶性对流/固区域进行区分;S8对LBM计算空间内的流/固区域与边界进行标识,进而完成LBM计算网格的生成等;本发明使得计算网格的生成能同时兼顾微细结构重建的真实性与网格空间分辨率的可调整性,能够提升LBM求解的灵活性与可靠性等。
-
公开(公告)号:CN111174895A
公开(公告)日:2020-05-19
申请号:CN202010107271.2
申请日:2020-02-21
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明涉及一种用于超声测量中波速与温度关联关系标定装置,包括:微控制器、电磁超声收发模块、加热模块、保温模块、温度测量模块以及显示模块;所述电磁超声收发模块、加热模块、保温模块和温度测量模块均作用于被测试件;所述微控制器分别与电磁超声收发模块、加热模块、温度测量模块连接,控制各个模块工作,并采集电磁超声收发模块和温度测量模块的数据从而计算超声波在被测试件中的波速与温度的关系;所述显示模块与微控制器连接,用于显示波速与温度的标定结果。该装置实现标定实验的一体化和自动化测量,能够简单快捷地得到波速和温度的关系,可根据需求标定材料的超声传播特性,扩展了超声测温、测厚等技术在实际使用中对材料的适应性。
-
公开(公告)号:CN119826998B
公开(公告)日:2025-05-09
申请号:CN202510316124.9
申请日:2025-03-18
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01K11/22
Abstract: 本发明公开了一种基于超声倏逝波幅值测量高温固体结构表面温度的方法,属于无损测量领域,包括步骤:在不同的表面温度条件下,在高温固体结构上方激发超声波,测量不同表面温度下的超声倏逝波幅值大小;对超声倏逝波幅值与温度的关联关系进行确定;在超声倏逝波幅值与温度的关联关系确定以后,在后续的超声探测中,结合超声倏逝波的测量幅值与预先确定的所述超声倏逝波幅值与温度的关联关系式,计算得到高温固体结构表面的温度。本发明不依赖于被测材料表面发出的辐射,能够在高温或极高温环境下稳定测量,实时性好。
-
-
-
-
-
-
-
-
-