-
公开(公告)号:CN119087905A
公开(公告)日:2024-12-06
申请号:CN202411159907.2
申请日:2024-08-22
Applicant: 华中科技大学 , 武汉智能设计与数控技术创新中心
IPC: G05B19/19
Abstract: 本发明属于数控加工及人工智能相关技术领域,其公开了一种无策略铣削加工刀具路径生成方法及系统,方法包括:获取待加工零件的网格模型确定待加工区域,将刀具路径生成问题转化为网格中心点访问顺序问题,将其转换为强化学习任务;建立强化学习任务的MDP模型,MDP模型中的智能体为刀具,环境为网格中心点的状态,定义刀具的状态空间以及对应的动作空间,设置刀具动作的即时奖励函数;求解该MDP模型,生成待加工零件的刀具路径。本发明将强化学习方法与刀具路径生成进行有效结合,通过将刀具路径生成问题转换为求解强化学习任务,不需要给定刀路生成策略,可以自主生成刀具路径,从而减少人工依赖,且提高加工效率。
-
公开(公告)号:CN118642427A
公开(公告)日:2024-09-13
申请号:CN202410576698.5
申请日:2024-05-10
Applicant: 华中科技大学 , 武汉智能设计与数控技术创新中心
IPC: G05B19/404 , G06F17/14
Abstract: 本发明属于线性系统控制相关技术领域,并具体公开了一种线性系统跟踪误差特性的评价方法、系统及应用,其包括如下步骤:根据线性系统的频率特性确定最大跟踪误差;根据线性系统运动学参数的最大值,得到运动学约束;结合最大跟踪误差,得到在运动学约束下线性系统跟踪误差的上确界;根据跟踪误差的上确界评价线性系统的跟踪误差特性。本发明评价方法基于线性系统幅频相频特性和运动学参数的最大值,从而避免了评价结果的不稳定性;且评价结果给出的是线性系统在给定运动学约束下跟踪误差的上确界,从而保证了评价结果的可靠性。
-
公开(公告)号:CN117492362A
公开(公告)日:2024-02-02
申请号:CN202311315743.3
申请日:2023-10-11
Applicant: 华中科技大学 , 武汉智能设计与数控技术创新中心
IPC: G05B13/04
Abstract: 本发明属于数控系统动力学分析相关技术领域,其公开了一种数控系统摩擦力的建模方法及其应用,该方法包括以下步骤:将摩擦力分为滞回摩擦力及静态摩擦力,分别用来描述摩擦力的动态特性和静态特性;滞回摩擦力在速度近零处利用滞回曲线进行拟合,在高速阶段退化为库伦摩擦力,得到滞回摩擦力模型;静态摩擦力在速度近零处退化为零,在高速阶段用Stribeck曲线进行拟合,得到静态摩擦力模型;对所述滞回摩擦力模型与所述静态摩擦力模型组成的摩擦模型进行参数辨识以得到最优摩擦模型。本发明解决数控系统在速度近零和速度反向处跟随效果差、跟随误差较大的技术问题。
-
公开(公告)号:CN116009459A
公开(公告)日:2023-04-25
申请号:CN202310090656.6
申请日:2023-01-18
Applicant: 华中科技大学 , 武汉华大新型电机科技股份有限公司
IPC: G05B19/042
Abstract: 本发明公开了一种数控系统边缘计算模块的数据采集平台及数控系统,包括:驱动层和接口层,所述驱动层与数据链路层进行数据交互,所述接口层与应用程序进行数据交互;驱动层通过从周期性集总帧中分离出的每个从站的上行数据包含的每个从站的实时状态信息,为每个从站构建一个独立的结构体,将每个从站的实时状态信息存入相应的结构体中,完成各个从站实时状态描述,将每个从站对应的实时状态信息缓存至对应采样通道的缓存区,通过接口层为智能化应用提供数据服务。本发明具有配置简单、采集数据种类全、采集效果实时性高等特点,为在边缘计算模块开发智能化应用提供了基础。
-
公开(公告)号:CN115082646A
公开(公告)日:2022-09-20
申请号:CN202210771142.2
申请日:2022-06-30
Applicant: 华中科技大学
Abstract: 本发明属于数控技术领域,并具体公开了一种基于对称点余量偏差的VR眼镜镜片位姿纠偏方法,其包括:S1、获取镜片毛坯的理论测量点集Q和实际测量点集P;S2、得到初始配准后的实际测量点集P′;S3、计算P′t和Q中对应点的对称点余量偏差Di以及对称点余量偏差和D,得到中间变量点集S;以P′作为P′t的初始值;S4、根据S和Q对P′t进行变换得到P′t+1;S5、计算P′t+1和Q的D,其小于预设阈值,则结束;否则转入步骤S6;S6、若t小于预设阈值,则t=t+1,回到S3;否则,以D值最小的一次迭代作为位姿纠偏结果。本发明避免了多点分中配准找正精度不高的问题,且保证了配准后点集具有良好的对称性。
-
公开(公告)号:CN113238528B
公开(公告)日:2022-08-02
申请号:CN202110603384.6
申请日:2021-05-31
Applicant: 华中科技大学
IPC: G05B19/4065
Abstract: 本发明属于机床故障预警与健康保障领域,并具体公开了一种机床健康状态实时评价方法及系统,其包括如下步骤:S1、在机床运行过程中,采集非切削过程的电控数据作为稳态样本;S2、在稳态样本中提取特征指标,根据特征指标和健康状态下的理想指标,得到机床健康指数,根据机床健康指数对机床健康状态进行评价。本发明为了消除由于动态特性对机床健康状态的影响,以非切削过程数据作为分析机床健康状态的样本,非切削过程数据具有较强的一致性,可以用来反映机床部件加工动作的优劣,进而评价机床健康状态,提高了机床健康状态评价的准确度和可靠性。
-
公开(公告)号:CN113189953B
公开(公告)日:2022-05-31
申请号:CN202110576457.7
申请日:2021-05-26
Applicant: 华中科技大学
IPC: G05B19/418
Abstract: 本发明属于数控加工工艺优化领域,并具体公开了一种基于双码联控的缠绕机工艺优化方法及缠绕机,其包括如下步骤:S1、获取第一加工代码和缠绕机结构参数,进而进行速度估算;S2、识别估算速度中的速度波动区间,并对该速度波动区间进行平滑处理,得到加工进给速度,根据该加工进给速度得到第二加工代码;S3、通过第一加工代码与第二加工代码共同控制缠绕机对零件的加工,完成缠绕机工艺优化。本发明基于双码联控,直接从速度层面使缠绕加工光顺,避免了速度波动和机床震动,提高缠绕机加工质量和机床寿命。
-
公开(公告)号:CN113867259A
公开(公告)日:2021-12-31
申请号:CN202111126866.3
申请日:2021-09-26
Applicant: 华中科技大学
IPC: G05B19/19
Abstract: 本发明属于数控加工相关技术领域,并公开了一种基于空间网格的刀具轨迹横向信息的重构方法。该方法包括下列步骤:S1确定加工轨迹上每个刀位点的坐标及沿坐标轴方向的极限坐标,将该极限坐标包括的区域进行网格划分;S2确定与相邻刀位点连接形成的直线相交的网格,并对相交的网格进行标记,遍历所有刀位点以此获得刀位点与网格的对应关系;S3对于任意刀位点,构建搜索范围,计算每个网格对应的刀位点与所述刀位点的距离,距离最近的刀位点作为刀位点的横向点,以此方式获得所有刀位点的横向点,即获得刀具轨迹的横向信息。通过本发明,解决行切轨迹中沿刀路轨迹访问点、直线段以及跨刀路行横向访问邻近刀位点间时效率低,耗时长的问题。
-
公开(公告)号:CN113093647A
公开(公告)日:2021-07-09
申请号:CN202110325229.2
申请日:2021-03-26
Applicant: 华中科技大学
IPC: G05B19/401
Abstract: 本发明公开了一种基于数控机床响应数据的反向间隙辨识方法及装置,属于数控技术领域,包括:提取数控机床在执行反向指令时在目标水平进给轴产生的指令速度信号vc(t)、电流信号I(t)、编码器位移信号pe(t)以及编码器速度信号ve(t),获得指令速度信号中指令速度过零的时刻t0,及其后与其间隔为预设时长的时刻t3;将编码器速度信号中相对于指令速度信号的时间延迟量ei消除,得到指令速度信号vc(t‑ei),并按照ev(t)=vc(t‑ei)‑ve(t)计算速度差值ev(t);计算速度差值ev(t)在时间段t0~t3中的极值时刻t1和电流信号I(t)在时间段t0~t3中的突变时刻t2;计算编码器位移信号pe(t)在时间段t1~t2产生的位移增量,将其绝对值辨识为反向间隙。本发明能够提高辨识精度,并对半闭环控制机床实现动态反向间隙辨识。
-
公开(公告)号:CN111487928B
公开(公告)日:2021-04-20
申请号:CN202010335392.2
申请日:2020-04-24
Applicant: 华中科技大学
IPC: G05B19/41
Abstract: 本发明属于数控技术领域相关技术领域,并公开了一种基于刀位点增删改指令的数控加工轨迹平滑方法。该方法包括:S1对于待处理的数控加工轨迹,计算加工轨迹上相邻刀位点之间的距离,当相邻刀位点之间的距离大于预设最大阈值时,在相邻的刀位点之间增加新的刀位点,直至不超过最大阈值;当相邻刀位点之间的距离小于预设最小阈值时,删除其中一个刀位点;当相邻刀位点之间的距离介于预设最大阈值和最小阈值之间时,修改其中的刀位点;S2构建数控系统实际加工的约束条件,判断加工轨迹上的每个刀位点是否满足约束条件;不满足的刀位点进行修改。通过本发明,在尽量不牺牲加工效率的同时使得处理后的刀位点能更好地满足平滑稳定的加工要求。
-
-
-
-
-
-
-
-
-