-
公开(公告)号:CN114723269B
公开(公告)日:2024-11-12
申请号:CN202210334912.7
申请日:2022-03-31
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06Q10/0635 , G06F18/24 , G06F18/21
Abstract: 本说明书实施例公开了一种事件的风险防控方法、装置及设备,该方法包括:获取目标事件的待处理的事件数据,然后,基于所述事件数据和所述目标事件对应的第一风控模型,确定所述第一风控模型对应的风险检测结果,所述第一风控模型是由所述目标事件对应的风控策略构建的模型,最终,可以基于所述第一风控模型对应的风险检测结果确定所述事件数据对应的初始风险信息,并将所述事件数据对应的初始风险信息和所述事件数据输入到所述目标事件对应的第二风控模型中,得到所述事件数据对应的风险信息,所述第二风控模型是通过所述目标事件对应的事件数据样本进行模型训练得到的模型。
-
公开(公告)号:CN113592696B
公开(公告)日:2024-11-12
申请号:CN202110927877.5
申请日:2021-08-12
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06T1/00 , G06F21/60 , G06F21/62 , G06V40/16 , G06V10/74 , G06V10/77 , G06V10/764 , G06N3/0464 , G06N3/084
Abstract: 本说明书实施例提供一种用于隐私保护的加密模型训练方法及装置、图像加密方法及装置和加密人脸图像识别方法及装置,该加密模型训练方法包括:利用待训练的加密模型对原始人脸图像加密,得到加密人脸图像;将加密人脸图像输入待训练的第一人脸识别模型,得到第一人脸预测结果;利用第一人脸预测结果和原始人脸图像对应的人脸标注结果,确定第一预测损失;将加密人脸图像输入判别模型,通过判别模型得到加密人脸图像为噪声图像的第一预测概率;根据与第一预测损失正相关,与第一预测概率负相关确定总预测损失;以最小化总预测损失为目标,训练加密模型以及第一人脸识别模型。
-
公开(公告)号:CN113486839B
公开(公告)日:2024-10-22
申请号:CN202110822280.4
申请日:2021-07-20
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06V40/16 , G06F21/60 , G06N3/0464 , G06N3/084
Abstract: 本说明书实施例提供一种加密模型训练方法及装置、图像加密方法及装置和加密人脸图像识别方法及装置,该加密模型训练方法包括:利用待训练的加密模型对原始人脸图像加密,得到加密人脸图像;将加密人脸图像输入待训练的第一人脸识别模型,得到第一人脸预测结果;利用第一人脸预测结果及原始人脸图像对应的人脸标注结果,确定第一预测损失;分别将原始人脸图像及加密人脸图像输入经训练的第二人脸识别模型,得到各自对应的第一输出结果及第二输出结果;基于第一输出结果及第二输出结果,确定第二预测损失;基于与第一预测损失和第二预测损失正相关,确定总预测损失;以最小化总预测损失为目标,训练加密模型以及第一人脸识别模型。
-
公开(公告)号:CN118708629A
公开(公告)日:2024-09-27
申请号:CN202410711816.9
申请日:2024-06-03
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/2458 , G06F16/906 , G06F16/9535 , G06Q30/0601 , G06Q40/04 , G06F18/25 , G06N3/042 , G06N3/0464 , G06N3/0455 , G06N3/0895
Abstract: 本说明书实施例公开了一种信息提取方法、装置及电子设备。所述信息提取方法包括:获取由节点和边所构成的目标异质图;将所述目标异质图输入用于提取风险信息的信息提取模型的分解模块,得到包含所述目标异质图的中心节点和目标节点的多个子图,同一所述子图的目标节点的类型相同,所述分解模块用于对输入的异质图进行分解处理;将各个所述子图分别输入所述信息提取模型中与所述子图对应的表征模块,得到各个所述子图的中心节点的属性表征;使用所述信息提取模型的融合模块对各个所述子图的中心节点的属性表征进行融合处理,得到所述目标异质图的中心节点的属性表征,以基于所述目标异质图的中心节点的属性表征执行相应的业务处理。
-
公开(公告)号:CN113850418B
公开(公告)日:2024-07-02
申请号:CN202111024302.9
申请日:2021-09-02
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F18/2433 , G06N3/0464 , G06F123/02 , G06N3/048
Abstract: 本说明书实施例提供了时间序列中异常数据的检测方法和装置。根据实施例的方法,首先获取待检测时间段内的时间序列,然后确定与该时间序列具有相关性的关联时间序列。然后获取当前时间序列的历史数据,进一步根据该时间序列以及该时间序列的历史数据和关联时间序列得到时间序列的预测值。最后根据该时间序列的预测值和实际值对时间序列中的指标数据是否存在异常进行检测。如此充分考虑了与该当前时间序列相关联的关联时间序列和历史数据,能够提高当前时间序列的预测值的准确度,从而使异常数据的检测具有更高的检测精度。
-
公开(公告)号:CN114091651B
公开(公告)日:2024-05-24
申请号:CN202111297665.X
申请日:2021-11-03
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种保护隐私数据的多方联合训练图神经网络的方法、装置及系统,方法包括:第一方利用图神经网络的第一参数部分,处理样本对象的第一特征部分,得到第一处理结果;利用控制器的目标公钥,对第一处理结果进行同态加密,得到第一加密结果;从第二方接收第二加密结果;基于第一加密结果和第二加密结果,及预设的损失函数,通过同态运算得到第一梯度密文;在第一梯度密文上添加对第一噪声加密的第一噪声密文,得到第一加密加噪数据;将其发送至控制器;从控制器接收对第一加密加噪数据解密后的第一加躁数据,从其中去除第一噪声,得到第一梯度明文;根据第一梯度明文,更新第一参数部分。
-
公开(公告)号:CN117933343A
公开(公告)日:2024-04-26
申请号:CN202410077897.1
申请日:2024-01-18
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书提供一种图数据处理以及模型训练的方法及装置,其中,图数据处理方法获取目标图数据;所述目标图数据中包括多个用户节点和各个用户节点各自对应的特征数据;任一用户节点对应的特征数据包括该用户节点表示的用户的用户特征;生成所述目标图数据对应的目标序列;所述目标序列包括目标数目个序列元素,所述序列元素包括所述多个节点的部分特征数据;将所述目标序列输入至目标图神经网络,利用目标脉冲神经网络对所述目标图神经网络输出的结果进行二值化处理,得到目标脉冲数据。
-
公开(公告)号:CN114120670B
公开(公告)日:2024-03-26
申请号:CN202111411787.7
申请日:2021-11-25
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G08G1/081 , G08G1/082 , G08G1/01 , G06N3/0464 , G06N3/08
Abstract: 本公开提供了一种用于交通信号控制的方法和系统,方法包括针对路网中的每个交叉路口,获取该交叉路口及其相邻路口的交通信息,其中交通信息包括车辆信息、道路信息和当前交通信号状态;将所获取的交通信息输入交通信号控制模型以得到预测的交通信号状态;以及基于针对每个交叉路口的所预测的交通信号状态来控制交通信号状态的改变。
-
公开(公告)号:CN117744837A
公开(公告)日:2024-03-22
申请号:CN202311873819.4
申请日:2023-12-29
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06N20/00 , G06F18/214 , G06F18/22 , G06F18/25 , G06F40/205 , G06F40/30 , G06N3/0455 , G06N3/08
Abstract: 本说明书公开一种模型训练、文本检测方法、装置、存储介质及设备,可以通过对不同的互联网平台上公开文本数据集进行整理,同时,通过使用多种常见对话大语言模型和丰富的提示语集合,来构造用于训练检测模型的训练数据,并且,由于在构建用于训练检测模型的训练数据的过程中,针对训练数据进行了多次过滤,使得得到的训练数据更接近于实际场景中的对大语言模型生成的文本进行使用的场景。除此之外,在对检测模型进行训练的过程中,通过使用具有较大参数规模的教师大语言模型输出的依据文本供检测模型学习,从而可以提升训练后的检测模型针对通过大语言模型生成的文本进行识别的准确率。
-
公开(公告)号:CN117725975A
公开(公告)日:2024-03-19
申请号:CN202410177223.9
申请日:2024-02-08
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06N3/08 , G06F11/34 , G06N3/0475 , G06N20/00
Abstract: 本说明书一个或多个实施例公开了一种决策模型的训练方法,包括:获取用户的意图标签,以及用户基于所述意图标签所描述的意图与网页进行交互的交互动作序列;获取用户在执行所述交互动作序列的过程中所交互的网页图像样本;将所述网页图像样本和所述意图标签输入生成模型,得到决策结果;基于所述决策结果和决策标签确定损失函数,来更新所述生成模型的参数,以得到目标决策模型。该方法提供的决策模型能够针对不同的小程序进行自动化决策,以快速生成巡检路径。相应地,本说明书还公开了决策模型的训练装置、小程序巡检方法及装置。
-
-
-
-
-
-
-
-
-